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5. CMB Polarization Cosmic Microwave Background

» Dominant component of current radiation energy

6. Matter power spectrum and Baryon Acoustic Oscillations + Snapshot at 380,000 yrs after Big Bang (z~1100,T~0.1eV)

(ny ~ 410/cm3,nv ~ 34O/cm3,n8 ~2.5%x107 /em?)



Last Scattering Epoch

A s the Universe cooled, the free electrons and protons could finally bond togther to
form hydrogen atoms. Atthe same time, the Universe went from a rich plasma to
a gas of newiral hydrogen.

(World Map) (With noise)

hydrogen plasma atomic hydrogen

(7 degree resolution) (Smoothed map to remove noises)

(taken from Wayne Hu’ s web page)
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The Nobel Prize
in Physics 1978

"for their discovery of
cosmic microwave
background radiation"

Robert Wilson

Arno Penzias

The Nobel Prize
in Physics 2006

"for their discovery of the
blackbody form and anisotropy
of the cosmic microwave
background radiation"

John C. Mather George F. Smoot

CMB and BAO

1. CMB big picture

2. CMB features

(SW plateau, Acoustic oscillations, Silk damping)

3. Phase coherence

4. CMB spectral distortion

5. CMB Polarization

6. Matter power spectrum and Baryon Acoustic Oscillations
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COBE(launched 1989), WMAP(2001), Planck(2009)
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CMB power spectrum
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Horizon size at LSS (z~1100)~2 degrees (ell ~200)
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CMB Acoustic Oscillations

Harmonic oscillation of baryon-photon fluid.
Baryons falls into gravitational potential well against the radiation pressure

Photon
Pressure

Effective
Mass

Potentia

Well
Temperature fluctuations at the bottom of potential well (figures from W. Hu)
Recombination Recombination i
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(NB: In CMB literature, "baryons" include electrons, e.g. "photon-baryon fluid")
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Sachs-Wolf effect
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How do the CMB power spectrum get affected by the cosmological parameters?
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-Exercise: what are the effects of neutrinos on CMB?

-Exercise: calculate the sound horizon at z=1100
(the distance traveled by the sound wave c,dt)
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to photon mean free path are damped

Silk damping (photon diffusion) at ell above about 2000
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-Exercise: what are the effects of massive neutrinos on primary CMB?

6000f — Y m,=1x12 eV
— ) m,=3%04 eV
— 5000}
‘;i — Y m,=0eV
~ 4000]
g
T 3000}
=
S
2000¢
Kenji Kadotélgm [F Summer School Cosmology Lectures




-Exercise: calculate the sound horizon at z=1100: distance traveled by the sound wave cdt

L .
L AG==5~08
DA
DA Reminder: Angular diameter distance d,

In the flat Universe, it is just the physical distance.

d, involves the integral of 1/H(z).

AO
L ~ ¢5(=/\3)i(z, =1100) ~ 100kpc

This horizon scale gets stretched to ~100 Mpc today (~100kpc*1100)
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Photon
Pressure

Effective
Mass

0~ di,rs =150 Mpe(~ 100Mpe / h)

A .Hu

Potentia
Waell

Sound horizon: the distance that sound can
travel in baryon-photon fluid

Harmonic oscillation of baryon-photon fluid.
Photon oscillation -> CMB
Baryon oscillation -> BAO imprinted into matter
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distance traveled by the sound wave cdt
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CMB and BAO
1. CMB big picture

2. CMB features
(SW plateau, Acoustic oscillations, Silk damping)

3. Phase coherence

4. CMB spectral distortion

5. CMB Polarization

6. Matter power spectrum and Baryon Acoustic Oscillations
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Cosmic Coherence
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CMB and BAO
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Thermal equilibrium:
Chemical equilibrium: Creation and destruction of photons
Kinetic equilibrium: Energy distribution by scattering

Radiative (double) Compton scattering: €+ <> €+y +Y

Bremsstrahlung: e+ N <=c+N+y
Compton scattering: et+y<>ety

u-type distortion: The number stays same but modifies the phase space distribution
y-type distortions: Kinematically decouple too, so it just adds energy shift
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Figure 1. Important events in the history of the CMB spectrum and anisotropy formation in big bang cos-
Process M
electron-positron annihilation 10°17®
BBN tritium decay 2% 1071
BBNBe decay o Khatri&Sunyaev’12
‘WIMP dark matter annihilation | 3 x ]0’9_fy ,',f\ﬁtw
Silk damping 1078 - 107
Adiabatic cooling of matter and
Bose-Einstein condensation -2.7%x 107

Table 1. Census of energy release and u distortions in standard cosmological model. The negative distortion
from adiabatic cooling of matter is shown in red.

Process ¥y
‘WIMP dark matter annihilation 6x 10"0/‘1’,",[‘,\0:WP
Silk damping 1078 -107
Adiabatic cooling of matter and
Bose-Einstein condensation -6x 10710
Reionization 1077
Mixing of blackbodies: CMB ¢ > 2 multipoles 8x 10710

Table 2. Census of energy release and y distortions in standard cosmological model. We also give the value
of y-type distortion expected from the mixing of blackbodies when averaging our CMB sky [53]. The negative
distortion from adiabatic cooling of matter is shown in red. y type distortion is clearly dominated by the
contributions, during and after reionization, from the intergalactic medium and clusters of galaxies, and the
early Universe contributions are difficult to constrain.

Current limits || <9 x<1077(95%CL),y <1.2x107°(95%CL)
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x

Suyaeve-Zel’dovich effect

* Inverse Compton scattering: energy transfer from
hot electrons(107-108K) to cool photons(3K)

Suwagens e J aoeprg
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SZ- effect vs. X- ray emission

Differential surface brightness is independent of redshift.

Abell 1914 z=0.17

Kenii Kadota(CTPU, 185) Gourtesy.of J. Garlstrom el.al.
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FIG. 8. Power spectrum of the SZ effect for each model in the RJ regime, as derived from the simulations. The approximate
range of confidence (200 < I < 2000) is highlighted by thicker lines. The power spectra outside of this range should be taken
as lower limits. For comparison, the primary CMB power spectrum is shown for the SCDM model. The 1o uncertainty for the

94GHz map channel is shown, for a band average of Al = 10._ The power spectrum for the residual discrete sources (> 2Jy) for
Kenji Kadota(dd4, ¢85 MAP channel is also shown.SUmmer School Cosmology Lectures

e.g. Planck: A sample of 186
galaxy clusters of S/N>7.
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CMB and BAO

. . Quadrupole
Polarization Anisotropy

1. CMB big picture N

Y
Thomson
Scattering

2. CMB features
(SW plateau, Acoustic oscillations, Silk damping)

Linear

E-mode (curl-free, even under partiy) Polarizalion

3. Phase coherence Q>0 U=0 Q<0 U=0 B-mode (curl, odd under parityu)
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5. CMB Polarization / ‘ AN \_/ AN Eh AN / "t /

4. CMB spectral distortion

a N
6. Matter power spectrum and Baryon Acoustic Oscillations

Scalar perturbation is parity even, leading to only E modes,
Tensor perturbations can produce both E and B modes

Kenji Kadota(CTPU, IBS) Summer School Cosmology Lectures Kenji Kadota(CTPU, IBS) Summer School Cosmology Lectures
¥ A B C
T --—-
#” Hotter ~~
- - - - / N
’ ) ’ \\ / \\ ’/ \\ /4 \
/ \ / -
do A I PN ¢ (o)
thom son Al ! \ ! < Yol S\ 2 Iy o
—— —X|E¢ 1 9 ) . Qe ||‘J|| * T .)C'/\ |_°'VVV\P Je_ g
L 17L9) \ / \ JE N LN 9 2y
/ \ ¢ \ \ ¥
/ \ 7/
e-— ' v SNo P Ny N \ - /
~ | o Hotter _.
electron - -

’ Incoming quadrupole radiation ‘ (figures from

/ I Scott Dodelson)

*’ i —— *’ | i b
— g Tl G = N - "
. + +
/ e~ I y e~ /II/Y . * ) . \ . ~ /
g / Scattering of  Scatteringof  Net scattering = bl U g
enlder nhatane  hattar nhatane  nalarizad nhatane
# enji Kadota(CTPU, IBS) Summer School cOsmo\oy/éches Kenji Kadota(CTPU, IBS) Summer School Cosmology Lectures

X



BB (+1)C/2x k7]

=
= 1t
. = .xwiliniun.nl
1 lenging
/ (multipole)
TB, EB vanishes because of the opposite parity
Negative TE cross correlation due to opposite phase
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Planck x Bicep x Keck (2015)

350 GHz should be dominated by the dust
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CMB and BAO
1. CMB big picture

2. CMB features

(SW plateau, Acoustic oscillations, Silk damping)

3. Phase coherence
4. CMB spectral distortion

5. CMB Polarization

6. |Matter power spectrum

and Baryon Acoustic Oscillations
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Reminder: Two-point correlation function and power spectrum.
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- Exercise: What are the effects of the neutrinos on matter power spectrum?

Two point correlation function S‘
representing the excess in the joint probability.

Joint probability of finding a pair of object
r with a separation r

[P(r) =n,n,[1+&,,(M1dV,aV,]

dVb Its Fourier transform is the Power spectrum

P(k) = [ d’rérye™”
representing the spread, or the variance, in the distribution.
(8(k)8(k"))y = P(l)8’ (k - k')

E(r) = {S(XHS(x + )

100,000 e . e .

e.g. Matter density fluctuation: in terms of the density contrast: S — p%p
Temperature fluctuation in terms of the temperature: S — %z
Galaxy distribution in terms of the number density: & = 2 7

For the Gaussian statistics, two point correlations are all we need:
(8(k,)8(k,)...6(k,)) =0 for odd n
(8(k, )6(k2)...¢5(kn)2 in terms of P(k) for even n (Wick's theorem)
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Free streaming scale
Free streaming length (c.f. Kolb and Turner) ‘
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Kenji Kadota(CTPU, IBS) Summer School Cosmology Lectures




107
107
— pure CDM
104 || — WDM: m=0.25kev — pure CDM \
— MDM: f=0.8, m=0.25keV WDM: m=2.0keV \
—— MDM: f=0.5, m=0.25keV 102 || — WDM: m=3.0keV \
10 [| — MDM: f=0.2, m=0.25keV —  WDM: m=4.0keV \‘
107" 10° 10" 10° o’ 10?
k [h/Mpc] k [h/Mpcl
Schneider 1412.2133
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CMB and BAO
1. CMB big picture

2. CMB features
(SW plateau, Acoustic oscillations, Silk damping)

3. Phase coherence
4. CMB spectral distortion

5. CMB Polarization

6. Matter power spectrum and|Baryon Acoustic Oscillations
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Massive Neutrino effects on Large Scale Structure (c.f. Lesgourgues&Pastor 06)
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Radius (Mpe)

Eisenstein, Seo, White
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The amplitude depends on the baryon fraction, but the position is fixed by the sound horizon.

-> use this as a standard ruler.
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Kenji Kadota(CTPU, IBS) Summer School Cosmology mm‘ﬁ‘ftp‘//www skyandtelescope com/

Put this ruler of 150 Mpc (sound horizon size at LSS) at different
redshifts, and measure the subtended angle.
->We can map out the distance, and, consequently we can obtain H(z)

d, = physical size of ruler/subtended angle

e.g.SDSS-11I detects BAO precise enough to make 1% measurement of cosmological distance.
(Early surveys were too small. CfA2 could ‘detect’ BAO with 0.05 o)

BAO scale

E(r) =(8(x)8(x + 1))
Galaxy distribution in terms of the number density & = T Z
nﬁ

2

SDSSIII, Anderson et al (2013)
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20

sl R RENE A=

Correlation function
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Kenji Kadota(CTPU, \§S) (h MDC) Summer School Cosmology Le 22222



CMB alone suffers from degeneracies which can be broken by other observables.

(figures from the
Dark Energy Survey
homepage)

H(z) from BAO helps! Standard ruler for cosmological distance measurement.

Currently: SDSS 1% distance measurement.

Future: DESI (Kitt Peak 4-m telescope, start~2018) 0.3% distance measurement.
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Putting all together: CMB + galaxy survey (including BAO, galaxy weak lensing, galaxy distribution)

Current : Zm, <0.17eV

CMB+BAO(arXiv:1502.01589)
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To study further:

® Books (classics):

The Early Universe by E.W. Kolb and M.S. Turner, Addison-Wesley 1990
Modern Cosmology by Scott Dodelson, Academic Press 2003
Cosmological Physics by John Peacock, Cambridge University Press 1999

¢ Did not cover the cosmic perturbation production from inflation in the lectures:

Particle physics models of inflation and the cosmological density perturbation

David H. Lyth and Antonio Riotto. Physics Report 314 (1999)

* The Review of Particle Physics <http://pdg.lbl.gov/index.htmlI>

which has many nice up-to-date review articles
(you can order a free hardcopy book from this link too)
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