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Arrow of time
Main events in the history of the Universe

Energy/Temp Time Event/Epoch

1019GeV 10-43sec Planck Time

       Inflation

1014GeV 10-35sec end of Inflation. Reheating.  Beginning of Big Bang

10-34sec end of grand unification. Baryogenesis: formation of matter-antimatter asymmetry

300GeV 10-12sec end of electroweak unification

1GeV 10-5sec Normal physics. Composition of the Universe: n, p, e-,e+, γ, ν

1MeV 1sec Neutrino decoupling. Neutrino do not interact with the rest of matter

0.5MeV Electron-positron annihilation. Composition: n, p, e-, γ, ν

0.1MeV 100sec Big Bang Nucleosynthesis: formation of elements He,D, Li

105K 103yrs Equality of matter and radiation: ρmatter  = ρrel.particles

3000K =0.3eV 105yrs Recombination and Decoupling. Composition: H,He, γ, ν

1Gyr (z=10) First galaxies. QSO quickly form.

z=3 Galaxy formation

z=1-2 Formation of clusters and superclusters.      Acceleration of the Universe. 
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!  Big Bang:  
 the Universe is filled with ionized gas 
! Recombination:The gas cools and becomes neutral 

 ! The first structures begin to form. 
 
 
      Reionization starts (z ~12) 

! Reionization is complete  

! Today�s structures 
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3.2 Relativistic Cosmology 113

3.2.1 Friedmann Equation

In the standard model of cosmology, the geometry of space-time is determined by the mat-
ter/energy content of the Universe through the Einstein field equation (see Appendix A):

Rµν −
1
2

gµνR−gµνΛ =
8πG
c4 Tµν . (3.54)

Here Rµν is the Ricci tensor, describing the local curvature of space-time, R is the curvature
scalar, gµν is the metric, T µν is the energy–momentum tensor of the matter content of the Uni-
verse, and Λ is the cosmological constant, which was introduced by Einstein to obtain a static
universe. Contracting Eq. (3.54) with gµν yields the trace of the field equation,

R+4Λ = −8πG
c4 T , (3.55)

where T = T λ
λ . This allows the field equation to be written in the form

Rµν +gµνΛ =
8πG
c4

(
Tµν −

1
2

gµνT
)

. (3.56)

For a uniform ideal fluid,

T µν = (ρ +P/c2)U µUν −gµνP , (3.57)

with ρc2 the energy density, P the pressure, and U µ = cdxµ/ds the four velocity of the fluid. In
a homogeneous and isotropic universe, the density and pressure depend only on the cosmic time,
and the four-velocity is U µ = (c,0,0,0) (i.e. no peculiar motion is allowed). This implies that
T µ
ν = diag(ρc2,−P,−P,−P) and T = ρc2 −3P.
For a homogeneous and isotropic universe, gµν is given by the Robertson–Walker metric,

which allows the Ricci tensor Rµν and curvature scalar R to be expressed in terms of the scale
factor a(t) and the curvature signature K (see Appendix A). Inserting the results into Eq. (3.56),
and using the energy–momentum tensor of a perfect fluid given in Eq. (3.57), one obtains

ä
a

= −4πG
3

(
ρ +3

P
c2

)
+

Λc2

3
(3.58)

for the time-time component, and

ä
a

+2
ȧ2

a2 +2
Kc2

a2 = 4πG
(

ρ − P
c2

)
+Λc2 (3.59)

for the space-space components. It then follows from substituting Eq. (3.58) into Eq. (3.59) that
(

ȧ
a

)2

=
8πG

3
ρ − Kc2

a2 +
Λc2

3
. (3.60)

As one sees from Eqs. (3.58)–(3.60), the cosmological constant can be considered as an energy
component with ‘mass’ density ρΛ = Λc2/8πG and pressure PΛ = −ρΛc2. Indeed, the term of
Einstein’s cosmological constant in Eq. (3.54) can be included as an energy–momentum tensor,
Tµν = (c4Λ/8πG)gµν , on the right-hand side of the field equation.

Eq. (3.60) is the Friedmann equation, and a cosmology that obeys it is called a Friedmann–
Robertson–Walker (FRW) cosmology. Together with Eq. (3.35), an equation of state, and an
initial condition, it determines the time dependence of a, ρ , P, and other properties of the
Universe.

It is interesting to note that one can derive the Friedmann equation (without the cosmological
constant term) for a matter dominated universe purely from Newtonian gravity (see §2.10). This
follows from the assumption that the Universe is homogeneous and isotropic so that the global
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ȧ2

a2 +2
Kc2

a2 = 4πG
(

ρ − P
c2

)
+Λc2 (3.59)

for the space-space components. It then follows from substituting Eq. (3.58) into Eq. (3.59) that
(

ȧ
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3
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!!a
a
= −

4πG
3
(E +3p)

[Exercise:&What&do&we&need&to&accelerate&the&Universe?&&

w ≡ p
E
< −
1
3

p = 1
2
!φ 2 −V (φ),E = 1

2
!φ 2 +V (φ)

w = −1, p = −Λ = −E

e.g.&Flat&constant&potenDal&& V = Λ

!!a
a
∝Λ⇒ a∝ exp( Λt)

E +3p = 2 !φ 2 −V( ) < 0

EquaDon&of&state&parameter&&

!φ 2 <V
PotenDal&energy&need&dominate&potenDal&energy&
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"&Slow&roll&"&

ρmat ~1/ a
3,ρrad ~1/ a

4,

H 2 =
8πG
3

ρ − k c
2

a2
,H ≡

!a
a

arad ~ t
1/2,amat ~ t

2/3

Friedmann&equaDon&(describing&the&expansion&of&the&Universe)�

Flat&Universe&with&k=0&:&&CriDcal&Density&� ρc =
3H 2

8πG

Ωi ≡
ρi
ρc

=
8πGρi
3H 2Density&Parameter�

Flat&Universe&(k=0)&� Ωtotal =1

Ω0 ≡
ρ0
ρc

ρ0 ~1.9×10
−26Ω0h

2kg /m3

H0 =100h / sec/Mpc
1Mpc ~ 3×1022m,h ~ 0.7
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Since k = a2H2(Ωtot − 1), the equation is simply H = H0

(

Ωtot − (Ωtot − 1)a−2
)1/2

Or we can use red-shift z + 1 = a0/a and set the boundary conditions today and have

H = H0

√

√

√

√

∑

i

Ωi,0(1 + z)3(1+wi) −

(

∑

i

Ωi,0 − 1

)

(1 + z)2 ∼ H0Ω
1/2
D,0a

−3(wD+1)/2

Depending on the dominant component with equation of state p = wρ , we have

Type w ρ(a) a(t) Ωi(tnow)

Radiation 1/3 ∝ a−4 ∝ t1/2 ∼ 10−5

Matter 0 ∝ a−3 ∝ t2/3 ∼ 1/3

Λ −1 const. eHt ∼ 2/3

Curvature −1/3 ∝ a−2 ∝ t1 ∼ 0
t

radiation

matter

Λ

ρ

teq

⇒ Different epochs of expansion of the Universe
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1/4

t1/2
SoluDon&for&the&&

Friedmann&equaDon:&
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a0
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3
2
H0t

!

"
#

$

%
&
2/3

radiaDon&

dominaDon&

epoch&

ma^er&

dominaDon&

epoch&

H 2 = H0
2 Ωv +

Ωm

a3
+
Ωr

a4
−
(Ωtotal −1)

a2
#

$
%

&
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(

k
H 2a2

≡
ρ

3H 2 / 8πG
−1≡Ωtotal −1
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[Exercise:&Flatness'problem'(Why'Ω=1?)&
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exercise:'Flatness'problem&

Ω(a)−1 −1= 3Kc2

8πGρ(a)a2

Ω−1
early −1
Ω−1

0 −1
~ T0

Teq

Teq
Tearly

#

$
%%

&
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(e.g. For Tearly = TPlanck ) ~ 3×10−5eV
1eV

1eV
1019GeV
#

$
%

&

'
(

2

~ 10−60

Using'Friedmann'equa.on:'&

ΩPlanck  was 60 orders of magnitude close to the unity than Ωtoday

ρearly ~ ρ0 ×
a0
aeq

"

#
$$

%

&
''

3

×
aeq
aearly

"

#
$$

%

&
''

4

,T ~ a−1

Ω−1
Planck ~1± 0.005×10

−60
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Ω0 =1−ΩK ,ΩK = 0.000± 0.005
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[Exercise:&<Expansion&Age&of&the&Universe>&

What&is&the&age&of&the&Universe&at&a&redshik&z?&

(Guess&how&old&the&Universe&was&when&z=1)�

t(z) ≡ da
!a0

a(z)
∫ =

1
H0

dz
(1+ z) Ωr,0 (1+ z)

4 +Ωm,0 (1+ z)
3 +Ωvac,0 + (1−Ω0 )(1+ z)

2
z

∞

∫

(a = a0 / (1+ z),H = !a / a,
H 2 = H0

2[Ωma
−3 +Ωra

−4 +Ωvac − (Ω−1)a
−2 ])

Ex:&What&is&the&age&of&the&Universe&at&a&redshik&z?&

Ans:&Just&integrate&the&Friedmann&equaDon.�

The&lookback&Dme&defined&as&& t0 − t(z)

In&the&ma^er&dominated&epoch:&

t(z) = 1
H0

2
3
(1+ z)−3/2 ~ 2

3
(1+ z)−3/2 ×1010h−1yr

t(z) ~ 1+ z
1010
!

"
#

$

%
&
−2

s

In&the&radiaDon&dominated&epoch:&

Fig. 1.— Example of lookback time versus redshift. From

http://www.mhhe.com/physsci/astronomy/fix/student/images/24ex3.jpg

tH ≡
1
H0

=
1

67.8km / (sMpc)
~ 14.4billion years

The&age&of&the&Universe&13.8&billion&years&

Summer&School&Cosmology&Lecture&Kenji&Kadota(CTPU,&IBS)&

Proper&distance&between&two&fundamental&&observers&(one&at&the&origin&r=0&and&the&other&at&r)&

l = a(t) dr '
1−Kr20

r
∫ = a(t)χ (r)

χ (r) =
sin−1 r( forK = +1)

r(K = 0)
sinh−1 r(K = −1)

#

$
%%

&
%
%

ds2 = dt2 − a2 (t) dr2

1− kr2
+ r2dθ 2 + r2 sin2θdφ 2

"

#
$

%

&
'

χ :  comoving ditance

In terms of the conformal time τ = cdt '
a(t ')0

t

∫

ds2 = a2[dτ 2 − dχ 2 − f 2 (χ )(dθ 2 + sin2θdφ 2 )]

f =
sin χ
χ

sinh χ

#

$
%

&
%

e.g. The photon trajectory along the radial direction (dθ = dφ = 0) :
dτ = dχ (photons travel along null geodesics)

Summer&School&Cosmology&Lecture&Kenji&Kadota(CTPU,&IBS)&

a(t) is dimensionless. Some books (e.g. Kolb-Turner) uses R(t) which is dimensionful. a(t) = R(t) / R(0)  ( R(0) =1,  so  a(t) = R(t))

dl
dt
≡ H (t)l

The&rate&at&which&the&proper&distance&between&the&fundamental&observes&changes:&

dl
dt
= !aχ = !a

a
aχ = !a

a
l

ex.&Show&that:& H (t) = !a
a

&The&value&of&Hubble&parameter&at&present&Dme:&&&

H0 =100h km / s /Mpc ~ 70 / km / s /Mpc
Summer&School&Cosmology&Lecture&Kenji&Kadota(CTPU,&IBS)&

l : proper time
l(t) = a(t)χ : χ  is comoving distance

Hubble&Parameter&



Suppose&a&fundamental&observer&emits&the&wave&crest&to&the&origin&at&t0&and&t1.&&

The&wavelength&is&then&Doppler&shiked;&

Present values : z = 0,a =1λ0

λ1

=
a(t0 )
a(t1)

≡1+ z(t1)

For the relativistic particle, pc = E = hν ∝ a−1  due to the redshift
(p∝ a−1  holds for massive particles too)

[Exercise:&&What&is&the&redshik&for&the&epoch&of&ma^er[radiaDon&equality?&

&

&&&
Ωm0 ~ 0.3(~ΩCDM 0 (0.24)+Ωb0 (0.04)),Ωr0 ~ 10−5

1+ zeq = a / aeq =Ωm0 /Ωr0 ~ 3×103(corresopnding to T ~ 104K )
(Planck2015 : zeq ~ 3400)

Summer&School&Cosmology&Lecture&Kenji&Kadota(CTPU,&IBS)&

Redshik&

The&proper&velocity&of&a&parDcle&with&respect&to&a&fundamental&observer&at&the&origin&

is&defined&as:&

v = dl
dt
=
d(aχ )
dt

= !aχ + a !χ ≡ vexpansion + vpeculiar

vexpansion =
!a
a
aχ = Hl

Summer&School&Cosmology&Lecture&

Coherent&infall&bulk&moDon&of&galaxies&towards&the&halo&center&(overdense&region).&

Redshik&space&distorDon&(Kaiser&(1987))&

Real&Space&&&&&&&&&&&&&&&&Redshik&space&

Kenji&Kadota(CTPU,&IBS)&
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Plan&of&Lectures�

Brief&History&of&the&Universe&

FRW&cosmology&

Thermodynamics&in&the&Expanding&Universe&

InflaDon&

Big&Bang&Nucleosynthesis&

Baryogenesis/Leptogenesis&

Cosmic&Microwave&Backgrounds&&

Baryon&AcousDc&OscillaDons&

1.#Introduc,on#to#Standard#Cosmology#

3.#CMB#and#Large#Scale#Structure#of#the#Universe#

2.#The#Early#Universe#Phenomenology#

Kenji&Kadota(CTPU,&IBS)&

Thermodynamics&in&the&Expanding&Universe&

&& ! = c = kB =1
n = g

(2π )3
f ( !p)∫ d3p

ρ = g
(2π )3

E( !p) f ( !p)∫ d3p

P = 1
3
n pv =

1
3
n p2

E
=

g
(2π )3

!p 2

3E
f ( !p)∫ d3p

Summer&School&Cosmology&Lecture&

f ( !p) = 1
e(E−µ )/T±1

ρ = (π 2 / 30)gT 4 (Bose), (7 / 8)× (π 2 / 30)gT 4 (Fermi)
n = (ζ (3)(~1.2) /π 2 )gT 3(Bose), (3 / 4)× (ζ (3) /π 2 )gT 3(Fermi)
p = ρ / 3

n = g mT
2π

!

"
#

$

%
&
3/2

exp[−m /T ]

ρ =mn
p = nT

For&a&relaDvisDc&parDcle&(T>>m),&

For&the&non[relaDvisDc&limit&(m>>T)&

Kenji&Kadota(CTPU,&IBS)&

Natural&units&
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[Before&the&decoupling:&&

The&parDcles&can&maintain&the&equilibrium&distribuDon&through&the&interacDons&in&the&plasma&&&

[&Exercise:&How&about&aker&the&decoupling?&

They&can&sDll&maintain&the&equilibrium&distribuDon&aker&the&decoupling&if&

highly&relaDvisDc&(T>>m)&or&highly&non[relaDvisDc&(m>>T).&

&

a)&The&physical&momentum&of&a&parDcle&decays&with&the&expansion&of&the&Universe&p~1/a&

b)&The&number&density&~1/a3&

f ( !p) = 1
eE /T±1

n ~ d3p∫ f (p) = 1
a3

d3q∫ f (q ≡ ap) =

(relativistic) 1
a3

d3q∫ 1

Exp[ q
aT
]±1

(non− rel) 1
a3

d3q∫ 1

Exp[ q
2

a2T
]±1

n ~1/ a3 ⇒
(rel)T ~1/ a

(non− rel)T ~1/ a2

In&general,&however&(e.g.&T~m),&phase&space&distribuDon&does&not&obey&an&equilibrium&&

distribuDon&in&absence&of&the&interacDons&(solve&the&Boltzmann&equaDon!)&&

Kenji&Kadota(CTPU,&IBS)& Kenji&Kadota(CTPU,&IBS)& Summer&School&Cosmology&Lecture&

ρR =
π 2

30
g*T

4

The&effecDve&massless&degrees&of&freedom&&

pR = ρR / 3=
π 2

90
g*T

4

g* = gi
i=bosons
∑ Ti

T
"

#
$

%

&
'
4

+
7
8

gi
i= fermions
∑ Ti

T
"

#
$

%

&
'
4

[Exercise:&What&is&&g
*
&at&T=10GeV?&

(The&temperature&T&is&the&actual&temperature&of&the&background&plasma,&assumed&to&be&in&

equilibrium.&Usually&T
i
=T.&An&excepDon&includes&the&neutrino&temperature&(to&be&discussed&

later))&

Kenji&Kadota(CTPU,&IBS)& Summer&School&Cosmology&Lecture&

[Exercise:&What&is&the&effecDve&massless&degrees&of&freedom&at&T=10GeV?&

&

&

&

&

&

quarks&except&top&:&g*=&5&x&3&colors&x&2&spin&states&x&2(quarks&and&anDquakrs)&

gluon:&8&color&states&(no&9th&state&ie&no&color&singlet)&x&two&spins&states&

3&charged&leptons:&3&charged&leptons&x&two&spin&states&x&2&(anDleptons)&

3&neutrinos:&3&neutrinos&x&1&(only&lek[handed)&x&2&(anDneutrinos)&

photons&2(two&spin&states,&no&longitudinal&component)&

&

2+16+7/8*(30+30+12+6)=86.25&

&

&

&

mt~173&GeV&does&not&contribute.&

Summer&School&Cosmology&Lecture&

History of g(T)  

The phase diagram of the Standard Model 
(based on a dimensionally reduced SU (2)L 
theory with quarks and leptons, with the 
Abelian hypercharge symmetry U (1)Y 
neglected). The 1st-order transition line 
ends at the 2nd-order endpoint:  
mH ; 72 ± 2 GeV/c2, kBTE ; 110 GeV;  
for higher Higgs mass  it is a ‘crossover’  
Rummukainen et al, Nucl.Phys.B532:283,1998 

��� �+�%��)� 
&��# &� +�� ��)#0 �% -�)*�54 3. Thermal History

Table 3.2: Particle content of the Standard Model.

type mass spin g

quarks t, t̄ 173 GeV 1
2 2 · 2 · 3 = 12

b, b̄ 4 GeV

c, c̄ 1 GeV

s, s̄ 100 MeV

d, s̄ 5 MeV

u, ū 2 MeV

gluons gi 0 1 8 · 2 = 16

leptons ⌧± 1777 MeV 1
2 2 · 2 = 4

µ± 106 MeV

e± 511 keV

⌫⌧ , ⌫̄⌧ < 0.6 eV 1
2 2 · 1 = 2

⌫µ, ⌫̄µ < 0.6 eV

⌫e, ⌫̄e < 0.6 eV

gauge bosons W+ 80 GeV 1 3

W� 80 GeV

Z0 91 GeV

� 0 2

Higgs boson H0 125 GeV 0 1

their internal degrees of freedom we get:11

gb = 28 photons (2), W± and Z0 (3 · 3), gluons (8 · 2), and Higgs (1)

gf = 90 quarks (6 · 12), charged leptons (3 · 4), and neutrinos (3 · 2)

and hence

g? = gb +
7

8
gf = 106.75 . (3.2.57)

As the temperature drops, various particle species become non-relativistic and annihilate. To

estimate g? at a temperature T we simply add up the contributions from all relativistic degrees

of freedom (with m ⌧ T ) and discard the rest.

Being the heaviest particles of the Standard Model, the top quarks annihilates first. At

T ⇠ 1
6mt ⇠ 30 GeV,12 the e↵ective number of relativistic species is reduced to g? = 106.75 �

11Here, we have used that massless spin-1 particles (photons and gluons) have two polarizations, massive spin-1

particles (W±, Z) have three polarizations and massive spin- 1
2
particles (e±, µ±, ⌧± and quarks) have two spin

states. We assumed that the neutrinos are purely left-handed (i.e. we only counted one helicity state). Also,

remember that fermions have anti-particles.
12The transition from relativistic to non-relativistic behaviour isn’t instantaneous. About 80% of the particle-

antiparticle annihilations takes place in the interval T = m ! 1
6
m.
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[Exercise:&&

Derive&the&factor&of&3/4&and&7/8&due&to&the&spin&staDsDcs&for&the&relaDvisDc&species&&

[Exercise:&Baryon&asymmetry&of&the&Universe&:&What&is&the&baryon&to&photon&raDo&(Ans.&10[9)&

[Exercise:&&&Sound&speed&&cs
2 =

dP
dρ 1/3&for&the&radiaDon&and&~T/m&&in&the&non[relaDvisDc&limit&

Summer&School&Cosmology&Lecture&

ex:&Derive&the&factor&of&3/4&and&7/8&due&to&the&spin&staDsDcs&for&the&relaDvisDc&species&&

AS 4022  Cosmology

Fermions vs Bosons

€ 

geff ≡ gi +
7

8
g j

fermions

∑
bosons

∑

€ 

1

e
x

+1
=

1

e
x
−1

−
2

e
2x
−1

Relativistic limit:

€ 

nF (T)

gF
=
nB (T) − 2nB (T /2)

gB

nF (T) /gF

nB (T) /gB
=1− 2

T /2

T

 

 
 

 

 
 

3

=1−
2

8
=
3

4

εF (T) /gF
εB (T) /gB

=1− 2
T /2

T

 

 
 

 

 
 

4

=1−
2

16
=
7

8

Trick:

Fermions at T

behave like

bosons at T

minus twice

bosons at T/2.

€ 

kT >> mc
2

E ⇒ pc y ≡ pc /kT

€ 

n ⇒
4π g

2π / h ( )
3

kT

c

 

 
 

 

 
 

3

y
2
dy

e
y ±1

∫

€ 

ε ⇒
4π g

2π / h ( )
3

k T( )
4

c
3

y
3
dy

e
y ±1

∫

E = pc, y ≡ pc / kT
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Fermions at T
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minus twice
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€ 

kT >> mc
2

E ⇒ pc y ≡ pc /kT

€ 

n ⇒
4π g

2π / h ( )
3

kT

c

 

 
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 
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3

y
2
dy

e
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∫

€ 

ε ⇒
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e
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Trick:

Fermions at T

behave like

bosons at T

minus twice

bosons at T/2.

€ 

kT >> mc
2

E ⇒ pc y ≡ pc /kT

€ 

n ⇒
4π g

2π / h ( )
3

kT

c

 

 
 

 

 
 

3

y
2
dy

e
y ±1

∫

€ 

ε ⇒
4π g

2π / h ( )
3

k T( )
4

c
3

y
3
dy

e
y ±1

∫

nF (T ) / gF
nF (T ) / gF

=1− 2 T / 2
T

"

#
$

%

&
'
3

= 3 / 4

EF (T ) / gF
EF (T ) / gF

=1− 2 T / 2
T

"

#
$

%

&
'
4

= 7 / 8
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Baryon&asymmetry&of&the&Universe& :&Baryon&to&photon&raDo&10[9&

AS 4022  Cosmology

Photon / Baryon ratio

Photons:

Baryons:
€ 

g = 2 εγ =
π 2

15

k T( )
4

/ h c( )
3

=
0.261 eV

cm
3

T

2.725K

 

 
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4

      Ωγ =
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5200
= 5 ×10
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     xM γ =

ΩM
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411
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3

T

2.725K
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3
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εb =Ωb

3H
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2
c
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8πG
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=
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m
3

           E
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2
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                η ≡
nγ

nb
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411
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= 2 ×10
9 Ωb

0.04
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 
 

−1

h

0.7

 

 
 

 

 
 

−2

Photons/Baryon :

How does η scale with redshift ?

Baryons:&

nb =
Eb

mb

=
Eb

mp(~ 940MeV )
= 0.22 /m3

Photons:&
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Photons/Baryon :

How does η scale with redshift ?
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Photons/Baryon :

How does η scale with redshift ?

Photons/Baryons:&

η ≡
nγ
nb
~ 411
0.22×10−6

~109 0.04
Ωb

%

&
'

(

)
*
0.7
h

%

&
'

(

)
*
2
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dT
dρ
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=
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dT
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me
−
p2

2mT p2∫ dp
#

$
%%
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'
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=

p2

2mT 2
p2

3m
e
−
p2

2mT p2∫ dp

p2

2mT 2 me
−
p2

2mT p2∫ dp
=

1
m
e
−
p2

2mT p6∫ dp

me
−
p2

2mT p4∫ dp
=
5
3
T
m

dppne
−
p2

2mT = (2mT )
n+1
2 dxe−x

2

xn∫∫ = 2(n−1)/2 (mT )
n+1
2 Γ

1+ n
2

#

$
%

&

'
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Γ
1+ n
2

"

#
$

%

&
'=
(2n)!
4n n!

πFor&a&non[negaDve&integer:&
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Sound&speed&for&a&non[relaDvisDc&monatomic&gas:&
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The&entropy&per&comoving&volume&is&conversed:& S = sa3

s = 2π
2

45
g*T

3 g* = gi
i=bosons
∑ Ti

T
"

#
$

%

&
'
3

+
7
8

gi
i= fermions
∑ Ti

T
"

#
$

%

&
'
3

[&When&g
*&&
does&not&change,&S=sa3=const&[>&T~1/a&

[&When&g
*&&
changes&(e.g.&parDcles&annihilate&and&disappear),&its&entropy&is&transferred&to&&

other&relaDvisDc&parDcles&in&the&thermal&plasma&and&the&thermal&plasma&heats&up&(strictly&&

speaking,&T&decreases&less&slowly)&

(The&temperature&T&is&the&actual&temperature&of&the&background&plasma,&assumed&to&be&in&

equilibrium.&Usually&T
i
=T)&

&
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g* : Entropy&degrees&of&freedom&

Tν
Tγ
=
4
11
!

"
#

$

%
&
1/3

[&Exercise:&Show&that&&&

Entropy&ConservaDon&

Entropy&conservaDon&:&neutrino&temperature&&

Summer&School&Cosmology&Lecture&

Neutrino&temperature&lower&than&the&photon&temperature&

Neutrinos&interact&via&the&weak&interacDons&(no&EM&charge)&

decouples&just&above&the&electron[positron&annihilaDon&

S = sa3∝ gT 3a3

the&energy&from&electron[positron&annihilaDon&goes&into&the&thermal&plasma&

Entropy&S&is&conserved&

s(a1)[γ + e
+ + e− +3ν +3ν ]

s(a2 )[γ +3ν +3ν ]
=
T 3(a1)[2+ (7 / 8)(2+ 2+3+3)]
2Tγ

3(a2 )+ (7 / 8)6Tν
3(a2 )

s(a1)a1
3 = s(a2 )a2

3
Neutrino&temp&scales&as&1/a& ⇒

Tν
Tγ
=
4
11
"

#
$

%

&
'
1/3

Tν
Tγ
=
4
11
!

"
#

$

%
&
1/3

Ex:&What&is&the&current&energy&density&for&a&massive&neutrino?&& Ωνh
2 =

mν

94eV
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a1T (a1) = a2Tν (a2 )
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Ex:&What&is&the&current&energy&density&for&massive&neutrinos?&&

nν =

3
4
T 3
ν

T 3
γ

nγ ~
3
4
×
4
11
×
411
cm3 ~

112
cm3

ρν =mνnν

Ων =
ρν
ρcri

=
ρν

1.054h2 ×104[eV / cm3]
~ mν

94eVh2
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Free&streaming&scale�

λ ≡ a(t0 ) dtv(t) / a(t)
tdec

t0
∫ = a(t0 )a(tdec )v(tdec ) dt1/ a2 (t)

tdec

t0
∫

a ~ t1/2,a ~ t2/3

v(tdec ) ~ T (tdec ) /m

Free&streaming&length&(c.f.&Kolb&and&Turner)�
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<1 kev DM               >1 kev DM               CDM 

Structure formation with suppressed perturbations 3

Figure 1. Linear dimensionless power spectrum �(k) = k3P�(k)/2⇡2 of the dark matter scenarios (�) investigated in this paper. Left
panel: pure CDM (black), WDM (red) and various MDM models (blue, magenta, green) at redshift 50, where f = ⌦WDM/(⌦CDM +
⌦WDM). Middle Panel: pure CDM (black) and di↵erent WDM models (cyan, purple, pink) at redshift 100. Right Panel: pure CDM
(black) and two WIMP-DM scenarios (brown, orange) at redshift 300.

magnitude in scale, rather than the steep cuto↵ known from
WDM. The e↵ect is illustrated in the left panel of Fig. 1,
where we plot the dimensionless power spectra of di↵erent
mixed DM (MDM) scenarios (consisting of a CDM part and
a thermal WDM part with m = 0.25 keV) with increasing
fraction f = ⌦WDM/(⌦CDM + ⌦WDM).

The concept of MDM is neither new nor particularly
exotic. In fact, it is clear that there must be more than one
DM component, since neutrons are known to have non-zero
mass. However, both the neutrino masses and their abun-
dance are small, leading to an evenly damped power spec-
trum at relevant scales (i.e k > 0.1 h/Mpc), very similar to
the case of pure CDM with low sigma-8 normalisation (Viel
et al. 2010).

Instead of two (or more) distinct particles acting as DM
components, MDM-like compositions can also arise due to
multi-channel DM production in the early Universe, yielding
momentum distributions that mimic the case of several DM
components. Prime example is again the sterile neutrino,
which can be produced via resonant oscillations with active
neutrinos (Shi & Fuller 1999), where some subdominant part
is always produced out of resonance, leading to particle mo-
menta from two overlapping distributions (Boyarsky et al.
2009). The e↵ect can be even stronger if the sterile neutri-
nos with nonzero mixing angle are produced via the decay of
heavy scalars, yielding a momentum distribution with two
distinct peaks (Merle & Schneider 2014).

2.3 WIMP dark matter (nDM)

The most popular group of dark matter candidates are
weakly interacting massive particles (WIMP) with the neu-
tralino as prime candidate. The popularity of WIMP DM
comes from the fact that such particles naturally appear in
supersymmetric extensions of the standard model, and that
they are produced via thermal freeze-out at roughly the right
amount to account for the observed DM abundance (this is
usually referred to as the WIMP miracle, see Bertone et al.
2005, for a summary).

Because WIMPs are heavy (with particle masses in
the GeV or TeV scales) and weakly interacting, they be-

come non-relativistic very early, which leads to extremely
small suppression scales. Depending on the parameters of
the model, the mass scale of WIMP DM suppression is ex-
pected to lie between roughly 10�9 M�/h and 102 M�/h
(Profumo et al. 2005).

In the right panel of Fig. 1 we plot the power spectra
of neutralino DM (nDM) with a mass of m = 100 (brown
line) and m = 215 GeV (orange line) and corresponding
decoupling temperatures of Tdk = 28 MeV and Tdk = 33
MeV. These spectra are again compared to the hypothetical
case of pure CDM (black line). The suppression of power in
WIMP scenarios happens at very high wave-numbers and
has an exponential shape, as shown by Green et al. (2005).
We will show later on that WIMP models of this kind lead
to a suppression at halo masses of about 10�6 M�/h.

2.4 Other models with suppressed power

There are many other DM candidates with di↵erent sup-
pression scales, depending on their interaction and free-
streaming properties. A non-exhaustive list of examples with
comparably strong suppression are interacting DM (Boehm
& Schae↵er 2005), decaying DM (Kaplinghat 2005), atomic
DM (Cyr-Racine & Sigurdson 2013) or ultra-light axion DM
(Marsh & Silk 2013).

It is also possible to obtain suppressed small-scale per-
turbations from e↵ects not related to dark matter. Inflation
could lead to a running of the spectral index, gradually re-
ducing power on small scales (Kosowsky & Turner 1995), or
it could induce a strong cuto↵ similarly than in the case of
WDM (Kamionkowski & Liddle 2000).

3 NUMERICAL SIMULATIONS

We run and analyse numerical simulations of di↵erent res-
olution with linear power spectra representing pure cold,
warm, mixed, and WIMP dark matter (DM) scenarios. The
initial conditions are generated from the linear power spec-
tra illustrated in Fig. 1, selected to cover di↵erent scales of
power suppression as well as a variety of shapes from steep
cuto↵s to shallow decreases towards large wave-numbers.

c� 0000 RAS, MNRAS 000, 000–000
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1)&Calculate&the&free&streaming&scale&for&a&parDcle&which&becomes&non[relaDvisDc&at&tNR<teq&(&

radiaDon[ma^er&equality).&

&

2)&What&is&the&free&streaming&length&scale&if&the&dark&ma^er&is&the&weakly&interacDng&massive&&

parDcle&with&mass&30&eV&which&decouples&around&T~MeV.&Check&that&the&mass&contained&in&this&&

length&scale&corresponds&to&large&clusters.&&&

(zeq~3400.&The&parDcle&becomes&non[relaDvisDc&at&T&~m.)&

Proper distance:LFS (t) = a(t) v(t ')
a(t ')

dt '
0

t
∫

free&streaming&scale&&

v(t ')
a(t ')

dt ' =
0

t
∫ v(t ')

a(t ')
dt '+ v(t ')

a(t ')
dt '+ v(t ')

a(t ')
dt '

teq

t
∫tNR

teq∫0

tNR∫
t < tNR : v ~1,a ~ t

1/2

tNR < t < teq : v ~1/ a,a ~ t
1/2

teq < t : v ~1/ a,a ~ t
2/3

The&ma^er&fluctuaDons&are&suppressed&at&scales&with&L<Lfs&&

t < tNR : LFS = (2tNR / aNR
2 )a2 = 2t

tNR < t < teq : LFS = 2tNRa / aNR( )[1+ ln(a / aNR )]
teq < t : LFS = 2tNRa / aNR( )[1+ ln(a / aNR )]+ 3tNRa / aNR( )[1− aeq1/2 / a1/2 )]
t >> teq :~ 2tNRa / aNR( )[1+ ln(a / aNR )]+ 3tNRa / aNR( )]

(1)&&
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For the latter we have used that (1+zeq) = 2.4×104Ωm,0h2 = 2.4×104 ·0.3 ·
(0.7)2 = 3528. Substituting these values we find that

λfs(teq)

λH(tNR)
= 286

d) What is the free-streaming mass at matter-radiation equality? Hint: use
eq. (3.80) in MBW.

ANSWER: The free streaming mass at equality is

Mfs =
π

6
ρ̄ (λprop

fs )3 =
π

6
ρ̄0 (λcom

fs )3

Using that ρ̄0 = Ωm,0 ρcrit,0, with ρcrit,0 = 2.78 × 1011h−1 M⊙/(h−1 Mpc)3 we
find that

Mfs = 4.36 × 1010h−1 M⊙

(

λcom
fs

h−1 Mpc

)3

For the comoving free-streaming length we have that

λcom
fs = 286

2 c tNR

aNR

Evaluating this quantity requires that we first compute tNR. For this we use
that

a(t) =
(

32 πG ρr,0

3

)1/4

t1/2

[see eq.(3.80) in MBW]. Using that Ωr,0 = 4.2 × 10−5h−2 and that zNR =
2.9 × 1012 we find that tNR = 2.83 × 10−6s. Substitution in the equation
for the free-streaming length yields that λcom

fs = 45.6 pc = 4.56 × 10−5 Mpc.
Substituting this in the expression for the free-streaming mass, and using
that h = 0.7, we finally find that Mfs = 2.0 × 10−3 M⊙

5

M fs ≡
4π
3

LcomFS
2

"

#
$

%

&
'

3

ρm (t0 ) =
4π
3

LpropFS

2
"

#
$

%

&
'

3

ρm (tdec )

M fs =
4π
3

LpropFS

2
!

"
#

$

%
&

3

ρm (tdec ) =
4π
3

LcomFS
2

!

"
#

$

%
&

3

ρm (t0 )

LpropFS (t0 ) ~ 30Mpc
m

30eV
!

"
#

$

%
&
−1

M fs ~10
15MSolar

m
30eV
!

"
#

$

%
&
−2

This&mass&corresponds&to&large&clusters.&All&perturbaDons&with&masses&smaller&than&this&&

scale&would&be&damped&out,&and&the&first&objects&to&be&formed&in&the&early&Universe&would&

be&superclusters.&

(2)&&
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History&of&the&Universe&
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