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The quantum Hall effect (QHE) is one of the most fascinating phenomena in 
physics, induced by a topological quantum state of matter. 



Written by Edwin A. Abbott in 1884 



Pan et al., PRL  88, 176802 (02) 

“Electrons in Flatland” under a high magnetic field: QHE 



Classical Hall effect 

Lorentz force due to magnetic field Electric force due to charge accumulation 
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The Hall resistance is given by the steady-state condition balancing the two forces. 
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Integer quantum Hall effect  (IQHE) 

•  With help of the disorder-induced Anderson localization, the incompressibility of 
completely filled Landau levels at integer filling factors can explain the IQHE. 

Rxy =
h
ne2

Von Klitzing, Dorda, Pepper (1980) 
Figure: Nobel prize press release (1988) 



Magnetic algebra 

� There is a close similarity between the Hamiltonian of a particle moving in 2D under a 
uniform magnetic field and that of an 1D harmonic oscillator. 
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Landau levels in the Landau gauge 
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�   In the Landau gauge, the Hamiltonian reduces to that of an 
1D harmonic oscillator with its center location proportional to 
the perpendicular momentum, kylB

2. 
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�  Each Landau level has a macroscopic degeneracy!  
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Laughlin’s gauge argument for the quantized Hall resistance 

Applied Voltage V  

x 

y 

External Magnetic Field B 

Test flux 
δΦ	


Current 

Eigenstate wave function in the Landau gauge: 
• Gaussian wave packet in the x-direction 
• Plane wave in the y-direction 
• x0=kyl2 with l a magnetic length 

x 

Effect of adding test flux δΦ: 
• δΦ increases a vector potential shifting ky. 
• The center of wave packets moves. 
• When δΦ=hc/e, the physics must be invariant. 
• Therefore, the wave packets move by one unit. 
• When n Landau level is filled, n electrons are  
  transferred with the energy gain δE = neV. 

• Magnetic moment: 	

  µ = IA/c  
• Energy change:  
  δE = µ δB = µ δΦ/A = I δΦ/c  
• Therefore, I = c δE/δΦ	


Laughlin, PRB 23, 5632 (1981) 

The Hall resistance is so precisely quantized since only  
the extended states can respond to the global flux change. 
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“Landauer” approach for the quantized Hall resistance 
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Linear response theory for the quantized Hall resistance 

� The fluctuation-dissipation theorem is a general result of statistical mechanics 
stating that the fluctuation in a given system at equilibrium is related with the response 
of the system to a small applied perturbation.   

Fluctuation/Correlation  Dissipation/Response function 
Density-density Dielectric function 
Spin-spin Spin susceptibility  
Current-current along the same direction Conductivity  
Current-current between orthogonal directions Hall conductivity 

� The Kubo formula provides the precise mathematical formulation of the fluctuation-
dissipation theorem.  
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Connection between the Chern number and the Hall conductance 
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Chern number as a topological order parameter:  
TKNN formula 
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• This is the famous Thouless-Kohmoto-Nightingale-Nijs (TKNN) formula relating the 
the topologically invariant “order parameter” called the Chern number with the Hall 
conductivity via σxy=ne2/h. 	

Berry curvature flux piercing through the Brillouin zone 
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QHE in the lattice: Hofstadter’s Butterfly 

Magnetic flux through the unit cell 
in units of magnetic flux quantum 
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Topology plays an intriguing role in quantum physics under the name of 
the Berry phase.  



Adiabatic evolution and geometrical phase 

�  Adiabatic theorem (originally by Born and Fock, 1928): 
A physical system remains in its instantaneous energy eigenstate if a given perturbation is 
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the 
spectrum. 
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Berry realized that there was an additional 
geometrical phase that can have a physical effect. 
Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” 
Proc. R. Soc. A 392, 45 (1984) 



Formal theory of the Berry phase 
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Formal theory of the Berry phase 
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TKNN formula revisited 

�  The TKNN formula tells us that the Hall conductivity is proportional to the Berry phase 
of a closed path encompassing the entire Brillouin zone.   
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When does the topology become non-trivial?  
 

An answer to this question reveals that there is a profound connection between 
the Rabi oscillation and topological insulators.  



Rabi oscillation 
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Geometrical meaning of the Berry phase 

�  In the adiabatic limit, i.e., ω << Ω, the exact solution says: 
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Magnetic monopole in the Rabi oscillation 
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Topological insulators (TIs) are generated by a magnetic monopole in 
the pseudospin space.   



Graphene 

K,K
0
= (

2⇡

3a
,± 2⇡

3
p
3a

)

H = �t
X

hi,ji

(|riihrj |+ |rjihri|)� Graphene Hamiltonian: 

H = �t

Z

BZ
d2k

⇥
(eik·�1 + eik·�2 + eik·�3)|k,Aihk,B|+H.c.

⇤

=

Z

BZ
d2k

�
|k,Ai |k,Bi

�✓ 0 fk
f⇤
k 0

◆✓
hk,A|
hk,B|

◆



Graphene 
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Haldane model 
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 Chern number from the Landau level structure  
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Chern number from the Berry phase: 
Connection between the Rabi oscillation and TI 
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Kane-Mele model: spin-orbit-coupled graphene 
Kane, Mele, PRL 95, 226801 (2005) 
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Low-energy effective Hamiltonian for the Kane-Mele model 
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Condition for topological non-triviality 
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How to measure: quantum spin Hall effect (QSHE) 

Hasan, Kane, RMP 82, 3045 (2010) 

Interface between a quantum Hall insulator (in the 
Haldane model) and an ordinary insulator  

Interface between a quantum spin Hall insulator (in 
the Kane-Mele model) and an ordinary insulator  

Kane, Mele, PRL 95, 226801 (2005) 

1D energy bands for a strip of spin-
orbit coupled graphene as described 
by the Kane-Mele model 



Bernevig-Hughes-Zhang (BHZ) model: HgTe quantum well 
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König et al., Science 318, 766 (2007), adapted by Qi, Zhang, Phys. Today 63, 33 (2010) 

M/B < 0M/B > 0

Bernevig, Hughes, Zhang, Science 314, 1757 (2006) !Schematically speaking, a half of the Kane-Mele model 

Two-terminal charge 
conductance, not the 
spin-filtered Hall 
conductance! 



How to promote TI from 2D to 3D? 



3D TI as a system of stacked 2D TI layers: weak TI 

2D TIs 

� Unfortunately, unlike the 2D helical edge states, the time-reversal symmetry 
does not protect the surface states in a weak TI. Here, the surface states may be 
localized in the presence of disorder. 



Strong 3D TI: BiSe-family materials 
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Helical surface states: spin-momentum locking 

Bi2Te3 

Chen et al., Science 325, 178 (2009), adapted by Qi, 
Zhang, Phys. Today 63, 33 (2010) 

Xia et al., Nature Phys. 5, 398 (2009), Hsieh et al., Nature 460, 
1101 (2009), adapted by Qi, Zhang, RMP 83, 1057 (2011) 

Bi2Se3 



How to measure topology directly in the bulk without reference to boundaries? 
 

A quotation from Lord Kelvin, “To measure is to know.”  

W.-R. Lee & KP, arXiv:1503.01870 



 Bloch oscillation 

Experiments 
Waschke et al., PRL (1993): Semiconductor superlattice 

Dahan et al., PRL (1996): Optical lattice 

k 

εk 
•  Another way of viewing this is that the 
group velocity becomes negative once the 
crystal momentum crosses the zone 
boundary.   

•   The electron motion in the lattice is 
bounded and oscillatory due to the fact that 
no states are available outside the energy 
band. 

Band 
width 

e 



 Quantized Bloch oscillation: Wannier-Stark ladder (WSL) 

En(k?) = Ē(k?) + neEak

eEak

W.-R. Lee & KP, arXiv:1503.01870 



Zak phase: the WSL revisited  
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W.-R. Lee & KP, arXiv:1503.01870 
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Winding number of the WSL: BHZ model 

D
isorder strength (self-consistent B

orn approx.) 

Trivial topology 

M/B > 0

Non-trivial topology 

M/B < 0

W.-R. Lee & KP, arXiv:1503.01870 



Winding number of the WSL: Kane-Mele model 

Non-trivial topology 

M/B < 0

�SO 6= 0

Critical topology: 
Usual graphene 

M = B = 0

�SO = 0

Winding 
becomes 

discontinuous! 

W.-R. Lee & KP, arXiv:1503.01870 



Winding number of the WSL: Strong 3D TI model 

! 2D TI 

W.-R. Lee & KP, arXiv:1503.01870 

! 3D TI (a)

General 2D subspace:
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Berry phase

2D subspace
containing TRIM:

Abelian
Berry phase



Winding number of the WSL: Strong 3D TI model 

2D subspace 
containing TRIM:  

Abelian Berry 
connection 

Trivial  
topology 

Non-trivial  
topology 

General 2D subspace:  
Non-Abelian Berry 

connection 

W.-R. Lee & KP, arXiv:1503.01870 



Topological insulators provide one of the most dramatic physical examples 
accentuating an intriguing role of the geometrical phase in quantum physics. 


