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The quantum Hall effect (QHE) is one of the most fascinating phenomena in
physics, induced by a topological quantum state of matter.



Written by Edwin A. Abbott in 1884



“Electrons 1n Flatland” under a high magnetic field: QHE
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Classical Hall effect
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Lorentz force due to magnetic field Electric force due to charge accumulation
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The Hall resistance is given by the steady-state condition balancing the two forces.
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Integer quantum Hall effect (IQHE)
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Von Klitzing, Dorda, Pepper (1980)

Figure: Nobel prize press release (1988)

* With help of the disorder-induced Anderson localization, the incompressibility of
completely filled Landau levels at integer filling factors can explain the IQHE.



Magnetic algebra

* There 1s a close similarity between the Hamiltonian of a particle moving in 2D under a
uniform magnetic field and that of an 1D harmonic oscillator.
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Landau levels 1in the Landau gauge

* In the Landau gauge, the Hamiltonian reduces to that of an 0 .
1D harmonic oscillator with its center location proportional to % . -
the perpendicular momentum, &,/ . /T/T T
i >
7 1 9 eB \° \L :L/ X
Tom |\ A = (0, Bz,0)
1 2 1 2 k l2 2 E
= 5P T §mwc(x — kylg) A

* Each Landau level has a macroscopic degeneracy!
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Laughlin’s gauge argument for the quantized Hall resistance

Laughlin, PRB 23, 5632 (1981)

ixicmal Nagacic Ficld B Eigenstate wave function in the Landau gauge:
» Gaussian wave packet in the x-direction

* Plane wave in the y-direction

Test flux . * x,=k I° with / a magnetic length
oD
— (i el adl (sl el (adl (a
Applicd Voltage v NWWV\ > x
Effect of adding test flux 0®:
* 0P increases a vector potential shifting .
* Magnetic moment:  The center of wave packets moves.
u=I1A/ * When 0®=/c/e, the physics must be invariant.
 Energy change: * Therefore, the wave packets move by one unit.
OE=uodB=uod/A=10d/c  When n Landau level is filled, # electrons are
* Therefore, I = ¢ OE/0P transferred with the energy gain OE = neV.
Ryy = Vi h The Hall resistance is so precisely quantized since only

T I ne? the extended states can respond to the global flux change.



“Landauer” approach for the quantized Hall resistance

Edge states

Edge states

pp — p =eVy

e o o 9 M+—N—:€Vw
E _nety
h



Linear response theory for the quantized Hall resistance

* The fluctuation-dissipation theorem is a general result of statistical mechanics
stating that the fluctuation in a given system at equilibrium is related with the response

of the system to a small applied perturbation.

Fluctuation/Correlation

Dissipation/Response function

Density-density

Dielectric function

Spin-spin Spin susceptibility
Current-current along the same direction Conductivity
Current-current between orthogonal directions Hall conductivity

* The Kubo formula provides the precise mathematical formulation of the fluctuation-

dissipation theorem.
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Connection between the Chern number and the Hall conductance
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e Kubo formula:  0,3(q,w) = " [Hag(q,w) + 20
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* Current operator in the long wavelength limit:
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* Hall conductivity in the long wavelength limit:
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Chern number as a topological order parameter:

TKNN formula
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where u,,(r) is the periodic part of a Bloch wave function:
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* This is the famous Thouless-Kohmoto-Nightingale-Nijs (TKNN) formula relating the
the topologically invariant “order parameter” called the Chern number with the Hall
conductivity via o, =ne?/h.
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Berry curvature flux piercing through the Brillouin zone
(BZ) for the p-th energy band



QHE 1n the lattice: Hofstadter’s Buttertly

A Color: Hall conductance

Energy band

0 Magnetic flux through the unit cell 1
in units of magnetic flux quantum



Topology plays an intriguing role in quantum physics under the name of
the Berry phase.



Adiabatic evolution and geometrical phase

* Adiabatic theorem (originally by Born and Fock, 1928):

A physical system remains in its instantaneous energy eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the
spectrum.
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Berry realized that there was an additional

geometrical phase that can have a physical effect.

Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,”
Proc. R. Soc. A 392, 45 (1984)



Formal theory of the Berry phase
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* Berry connection: vector potential
Ay
Qg S . .

An(@) = i (Y (@) Va [1hn(d))

* Berry curvature: magnetic field

B (@) = Vg x A, (@) = i (Vaon(@)] X |Van(@))

* Berry phase: Aharonov-Bohm phase
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Formal theory of the Berry phase

Note H(Q)|Yn(@)) = E,(&)|1n(d))

Multiplying both sides by (1, (@)|V &
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TKNN formula revisited

* The TKNN formula tells us that the Hall conductivity is proportional to the Berry phase
of a closed path encompassing the entire Brillouin zone.
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When does the topology become non-trivial?

An answer to this question reveals that there is a profound connection between
the Rabi oscillation and topological insulators.



Rabi oscillation
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Geometrical meaning of the Berry phase

* In the adiabatic limit, i.e., w << Q, the exact solution says:
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Magnetic monopole in the Rabi oscillation
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Topological insulators (TIs) are generated by a magnetic monopole in
the pseudospin space.
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Graphene
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Massless Dirac Hamiltonian, or the Hamiltonian for “Zeeman coupling”
with B replaced by q



Haldane model

VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels:
Condensed-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o* in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.
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a,/ b;: vectors connecting between nearest/next nearest neighbors

H(k) = ?‘; f;‘k —dy o

dx = (Refx, —Im fx, gx)
FIG. 1. The honeycomb-net model (“2D graphite”) showing
nearest-neighbor bonds (solid lines) and second-neighbor bonds ik-a
=1 E (& ¢
)

(dashed lines). Open and solid points, respectively, mark the 4 fk
and B sublattice sites. The Wigner-Seitz unit cell is con-
veniently centered on the point of sixfold rotation symmetry
(marked “#*”) and is then bounded by the hexagon of nearest- gk = M + 2o Z COS (k . bz + ¢)
neighbor bonds. Arrows on second-neighbor bonds mark the -

directions of positive phase hopping in the state with broken ?

time-reversal invariance.




Chern number from the Landau level structure

* Energy of the Landau levels:

E, = sgn(n)\/(mav%)2 + 2ehvi|nB| (n #0)
Ey = amgvie sgn(B)
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FIG. 2. Phase diagram of the spinless electron model with
|t2/t1] < ¥. Zero-field quantum Hall effect phases (v=*1,
where o =ve?/h) occur if |M/t;| <3+/3|sing|. This figure
assumes that ¢, is positive; if it is negative, v changes sign. At
the phase boundaries separating the anomalous and normal
(v=0) semiconductor phases, the low-energy excitations of the
model simulate undoubled massless chiral relativistic fermions.

v E v

Graphene Landau levels



Chern number from the Berry phase:
Connection between the Rabi oscillation and T1
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Momentum space Bloch sphere

Chern number, or the winding number:
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Kane-Mele model: spin-orbit-coupled graphene

Kane, Mele, PRL 95, 226801 (2005)
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Low-energy effective Hamiltonian for the Kane-Mele model

Hylyy (k) = ( Bl ) =di-o die= (Refi,~Imfi o)
12880 (k) = H (T)*(—k) Time-reversal symmetry

(1) The energy spectrum is gapped: E+x = +|dyk| = i\/|fk\2 + 912<

(2) The low-energy effective Hamiltonian:

e Around k = K + q,

9v/3

3
fa = hvr(ge +iq,)  9q = —3V3Xso + TASOQQ(Q?C +q;)

e Around k = K + q, V3
9v3

fq = hvr(qs — iqy)  gq = 3v3Aso — TASOGQ(%% + qi)



Condition for topological non-triviality

dq,w = Aq, dq,:c = Aq,
M/B > 0 M/B <0

Topologically trivial Topologically non-trivial



How to measure: quantum spin Hall effect (QSHE)

E Conduction Band
Insulator n=0
(a) (b)
\AANAAA]  FEF ]
Quantum Hall 1
S n=
tate Valenc? Band E/t
—r/a 0 k —n/a 0
Interface between a quantum Hall insulator (in the
Haldane model) and an ordinary insulator
-1
E Conduction Band 0 m/a K, 21t/a
Conventional v=0
Insulator
() (b) ! !
- — o 1D energy bands for a strip of spin-
Quantum sp_n& l\T orbit coupled graphene as described
u u |
Hall insulator V=1 Valence Band by the Kane-Mele model
—n/a 0 k -m/a

' - - Kane, Mele, PRL 95, 226801 (2005
Interface between a quantum spin Hall insulator (in ane, Viele (2005)

the Kane-Mele model) and an ordinary insulator

Hasan, Kane, RMP 82, 3045 (2010)



Bernevig-Hughes-Zhang (BHZ) model: HgTe quantum well

*Schematically speaking, a half of the Kane-Mele model Bernevig, Hughes, Zhang, Science 314, 1757 (2006)
M + B(kZ + k) A(ky + iky) 0 0
B Ak, —iky)  —[M 4+ B(kZ + k)] 0 0
H(k) = el + 0 0 Mt BUE kD) Ak — iky)
0 0 —A(ky +iky)  —[M+ B(k2 +k})]
a NORMAL INVERTED
d<6.5nm d>6.5nm‘ \
Spin-up electrons in the s- cate 4S/Cdre care,/ Hgte /CdTe Spin-down electrons in the s-
like E1 conduction and the =Nt like E1 conduction and the
p-like H1 valence bands = - p-like H1 valence bands
b 0.05.
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Konig et al., Science 318, 766 (2007), adapted by Qi, Zhang, Phys. Today 63, 33 (2010)



How to promote TT from 2D to 3D?



3D TT as a system of stacked 2D TTI layers: weak TI

2D TIs

* Unfortunately, unlike the 2D helical edge states, the time-reversal symmetry
does not protect the surface states in a weak TI. Here, the surface states may be
localized in the presence of disorder.



Strong 3D TI: BiSe-family materials

M + B1k? +H Bak? Ay (kg + iky) 0 Ask,
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Ask, 0 — Ay (ky + 1Ry —(M + B1k? H Byk?)

* Lattice regularization: ko — sin (kqa)/a k2 — 2(1 — cos (kqa))/a*

e Strong TI:
k-
T
"t k., = plane A 3D TI becomes a strong TI if
band topology is opposite between
two 2D subsystems in the k-space

containing one set of time-reversal

y invariant momenta (TRIM) and
k. =0plane e other.




Helical surface states: spin-momentum locking

)
| B
(] 9_»
Db 4
Bi,Te, Bi,Se;,
a - = b (a) 01 (b) 01-

Eg (eV)
Eg (eV)

C -0.15 0 015 —O.IT'—6 015
—~ k, (A
%
I |le = (C) Low s High (d
Y é Tuned Bi,_sCa;Se, c
& 0.1 L
= [V
9 = N
® Bi E og; 0:0 _;;
@ Te1 g o =
-0.1 5
© Te2 (4]
Ce——¢ ) —_—
© 4)‘;\Z;AVEI\IUI\,[BER k( ff) -0.1 0.0 0.1 -02-0.1 0.0 0.1 02 03
k, (A1)
Chen et al., Science 325, 178 (2009), adapted by Qi, Xia et al., Nature Phys. 5, 398 (2009), Hsieh et al., Nature 460,

Zhang, Phys. Today 63, 33 (2010) 1101 (2009), adapted by Qi, Zhang, RMP 83, 1057 (2011)



How to measure topology directly in the bulk without reference to boundaries?

A quotation from Lord Kelvin, “To measure is to know.”

W.-R. Lee & KP, arXiv:1503.01870



Bloch oscillation

Experiments
Waschke et al., PRL (1993): Semiconductor superlattice

Dahan et al., PRL (1996): Optical lattice

A [ ¢Band * The electron motion in the lattice 1s
1 [ widh hounded and oscillatory due to the fact that
“TTrer1>| L — no states are available outside the energy
I band.
|
|
|
E
k4

* Another way of viewing this is that the
group velocity becomes negative once the
crystal momentum crosses the zone
boundary.
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Quantized Bloch oscillation: Wannier-Stark ladder (WSL)

W.-R. Lee & KP, arXiv:1503.01870
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Zak phase: the WSL revisited

W.-R. Lee & KP, arXiv:1503.01870
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Winding number of the WSL: BHZ model

W.-R. Lee & KP, arXiv:1503.01870

Non-trivial topology
M/B <0

Trivial topology N
M/B >0
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Winding number of the WSL: Kane-Mele model

Non-trivial topology

Aso # 0

M/B <0

(hw-E)/eEa,
(a») p—

1
[a—

(hw-E)/eEa,
o

kiay

W.-R. Lee & KP, arXiv:1503.01870

Critical topology:
Usual graphene

Aso =0
M=B=0
Winding

becomes
discontinuous!



Winding number of the WSL: Strong 3D TI model

W.-R. Lee & KP, arXiv:1503.01870

e 2DTI
e 3DTI
T/a
2D subspace
containing TRIM:
Abelian
0 Berry phase

-t/a

General 2D subspace:
Non-Abelian
Berry phase




Winding number of the WSL: Strong 3D TI model

W.-R. Lee & KP, arXiv:1503.01870

Non-trivial
topology §
2D. spbspace General 2D subspace:
containing TRIM: Non-Abelian Berry
Abelian Berry g connection
connection =
S

Trivial
topology

(hw-E)/eEa,




Topological insulators provide one of the most dramatic physical examples
accentuating an intriguing role of the geometrical phase in quantum physics.



