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Abstract

In this series of six-hour lectures, we give an introduction to supersymmetric compactifications
of string theory. For the first two hours, the idea of Kaluza-Klein reduction is reviewed and some
rudiments of complex and Kéahler geometries, as well as the notion of holonomy, are introduced.
For the second two hours, Calabi-Yau property is defined (and an example provided, depending on
how fast we proceed). The moduli space is also explored for Calabi-Yau geometries. Finally, for
the last two hours, we compactify type Il supergravities on a Calabi-Yau three-fold and study the
resulting effective theories. If time permitted, before closing, we shall either survey construction
methods for a Calabi-Yau three-fold or discuss a couple of famous flux compactification scenarios
of type II string theory.
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1.1

Introduction

Restrictions on the string theory background

e Polyakov action

1.2

2

2.1
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where X : ¥ < M with M =0,--- ,D —1 (c.f. a=0,1); o/ =12

2d NLSM with target space M (free if Gy n(X) = nun)

Sp is Weyl invariant (local rescaling, hog — e“’(")halg); also demanded after quantisation
Anomalies produce, 51(\51)\7 =o' Ryn + O(a'?) and B = 0 gives Einstein equations.
Compactification

Only those backgrounds that solve the 5 = 0 are viable (pert.) string backgrounds

Other beta functions for, Bysn and ¢, vanish for ¢ = const. and B = 0 only if D = 10 (taking
into account of susy partners of X and h).

Thus, My is a Ricci-flat manifold with Lorentzian signature (NB. O(a/?) corrections ignored).
A way to make the space-time look four-dimensional and Lorentz inv.:

Mip = My x K, (1.2)
where My is either AdS, Mink, or dS and K is “small” (than length scales already probed).

Eff. theory on My determined by the geometry of K¢ (physics det. by geometry).

E.g. [CHSW, ’85] with K¢ = CY3, the 4d theory has a minimal susy and x(Kjg) counts matters.

The aim of the lectures

Introduction to string compactifications on a Calabi-Yau manifold (c.f. there are other com-
pactifications, too!)

KK reduction

e KK unified gravity and EM in 4d by deriving the both from pure 5d gravity. Can this be

generalised for string theory compactifications from 10d to 4d?

e In this lecture, KK reduction will be applied to the field theory limit of string theory, which

neglects the tower of massive excitation modes and reproduces the scattering amplitudes.

Dimensional reduction

e D to d dimensions. A toy example: D =5 to d = 4 for a real massless scalar ¢,

S = —% / P2y pdM o | (2.3)

where the spacetime has the product form My = Minky X S}% with n = (=, 4+, +,+, +).



2.2

Coordinates: zy = (z4,y), with y € [0,27R].

E.om.: O¢p =0= 0,0"¢ + 5’5(;5 =0

Fourier expansion: ¢(z,y) = \/2177% > (@)™ R = 9,0 ¢, — n?/R2p, =0
i.e. in 4d, there’s a massless scalar ¢g and an infinite tower of massive scalars.

In the limit R — 0, only the zero mode ¢g remains light and the other very massive modes are
discarded (dimensional reduction)

Remark: the notion of zero modes generalises to curved internal compact spaces too, but zero
modes do not have to be indep. of the internal coordinates in general (consistency of the
discarding the heavy modes in the sense that the lower-dim eom also solves the full-dim one
has to be questioned in general).

Not just scalar: branching of D-dim Lorentz reps, SO(1,d — 1) x SO(D —d) € SO(1,D —1).
E.g. Ay = (Au—o,. d-1,Am=d,.. p—1) (branching of D = (d,1) & (1,D —d))

E.g. Bun = (Buw, Bum: Bmn)

Not just bosonic fields

Our interest lies in compactification of susy theories with a certain number of conserved spinorial
charges, Q'=1"*N'_and hence, branching of spinors is relevent.

Remark: Dirac spinors and Gamma matrices, '™ = (T'*, ™), are of size 212] and the lower-dim
gamma matrices act on all the components of higher-dim spinor.

E.g. D =11 spinor to d = 4: 32 = (4, 8), all three reps are Majorana spinors.

Supersymmetry and Calabi-Yau-ness

Sugras in high dimensions

D =11,N =1; D = 10, N = (1,1) (non-chiral, ITA), D = 10, N' = (2,0) (chiral, IIB),
D =10, N' =1 may couple to SYM with G = Eg x Eg or SO(32).

The sugras above are a low-energy limit of various string theories.
4d susy theories are obtained by dimensionally reducing the above (i.e. torus compactification).
Susy in 4d is attractive but too many are not desirable (non-chiral); beyond torus comp.!

Remark: Susy is not just phenomenologically desirable but supersymmetric string compactifi-
cations are stable (c.f. tachyons or tadpoles of non-susy vacua).

Let us have the gravity back in. Dynamics (eom) should allow for
Mp=Mygx Kp_q, (2.4)
in which case the system is said to admit spontaneous compactification.

With the vev ansatz, (Gun(7,y)) = g, (v)d2Hdz” +G,,, (y)dy™dy™ (which can be generalised
to a warped geometry maintaining maximal space-time symmetry in My), we demand susy in
the effective theory (with the eoms to be checked a posteriori).



i.e. There must be a spinor field, €, for which (0.®p) ~ (®f) = 0 and (0Py) ~ (Pp) = 0; the
former is zero since fermions are zero for maximal symmetry in My (they transform non-trivially
under Lorentz, for instance) and we only need to demand the latter.

In sugra, there’s a gravitino, ¥,s that transforms as d.¢pps = Ve + -+, where --- contains
other bosonic fields (dilaton, H and F’s) which we turn off.

Thus, we demand that (Vjse) = Ve =0 = Ve = 0 and vue =0.
Consequence of the existence of Killing spinors

(dropping the bars from now) [V, Vy]e = iRMNPQFPQG =0, where 'y = % [a,Tpl.

Thus, EMQ =0 (EMQer = 0 follows from TNTPQ = NPQ L GNPTQ _ GNQTP and the
Bianchi, Rynpq + Ruone + Rupon = 0).

Thus, My is Mink and Kp_4 admits a Ricci-flat metric.
Detour: Holonomy

On an m-dim mfld, parallel transport of a vector v along a closed curve gives Uv with U € O(m);
H = {U} is the holonomy group C O(m) (SO(m), if orientable).

Rmk: 6V = —%aMN Ry n P QVQ implies that for a simply connected manifold to have a
non-trivial holonomy it has to have curvature.

We restrict to D = 10 and d = 4 case from now. Cov const spinor, €, is a singlet under ‘H. But
it is a SO(6) spinor and has R-/L-chirality piece transforming as 4 (4) of SO(6) ~ SU(4).

Suppose H = SU(3). Since 4gy7(a) = 3su(3) + Lsu(s), there is one cov const spinor of positive
and one of negative chirality, e+, so that the allowed susy parameter takes the form,

e=er@er(y) +er®e(y) , (2.5)
with e = €} and e_(y) = €/ (y) in a Majorana basis for e.

Schematic def. a 2n-dim compact Riemannian manifold with a metric whose holonomy is
SU(n) C SO(2n) is called a Calabi-Yau manifold.

A glimpse at Calabi-Yau manifolds (obvious by now)

Admit a covariantly constant spinor

Ricci flat.

Remarks

No SU(n) holonomy metrics are known except for the n = 1 case.

Manifolds with a special holonomy appear a lot in string theory. Berger’s classification for a
simply connected manifold (refs):

U(n),SU(n),Sp(n/2),Sp(n/2) - Sp(1), Ga(7d), Spin(7)(8d) (2.6)



2.3

Zero modes, harmonic forms and cohomologies
Generalities of KK reduction on a curved internal space: ®,...;n...(2, y)
Expand around a vev, ®,..;m...(2,y) = (Ppem-. (2, Y)) + dpeem-- (2, Y)
D-dim eom under the split metric ansatz:
Oa¢ + Ot =0, (2.7)
where Oy and Oy are diff operators of order p =1 or 2.

Expand ¢...m,... in terms of eigenfunctions Y2 (y) of Oing in Kp_g (eig. val \,):
B (5 = 3 6 (2)V2.(9) - (2.8)
Remark: A, ~ 1/RP det. mass of ¢j..(r) and zero modes of Oy corresp. to massless fields.

Caution in trunctation of heavy modes

In general not consistent to simply set the massive fields to zero (they might induce interactions
of ¢o not suppressed by heavy mass, e.g. ¢oPodn).

Even when the heavy fields can’t be naively discarded, the eff action might be consistently det.
Examples

Scalar: Oj,y = A has a unique scalar zero mode, leading to a single massless scalar in d dim.
Dirac: Opy = ¥V (= I'™-V,,,) has its zero mode count dep. on topology of Kp_4 (index theorem).

p-form: the action is
1

S, =——— F N xF, 2.9
P 2(p+1)!/MD pt+l N *Lpi1 (2.9)

leading to the eom ApA, =0, for Ap = dd* +d*d, upon fixing the gauge freedom by d*4, = 0.
Since Oy = Ajnt, the zero mode counting becomes a cohomology problem. p-form in D-dim
gives “b,” massless fields, n =0,--- ,p, that correspond to (p — n)-forms in d-dim.

Detour: (Co)homologies (Betti numbers) in relation with zero modes and harmonic forms

to come shortly after the following quick remarks.

Remark: Compactification of string theory v.s. that of its field theoretic limit

At length scales near /below [ = V!, classical geomtry has to be modified to ‘stringy geometry’.
Different geometries may correspond to the same physics, e.g. T-duality, mirror symmetry, etc.
In this lecture, we shall mainly consider sugras, as the field theory limit of string theory.

Back to the detour: (Co)homologies and Betti numbers

. Homology

On a smooth, connected (real) manifold, M, the p-th homology group of M is,
Hy = Zp/ By , (2.10)

where B, C Z, C Cy, are C, = {ap, = >_,¢;N; | N; are p-dim oriented submflds} (chains),
Zy ={ayp | Oa, = @} (cycles), and B, = {Jap+1} (boundaries).



Eliments of H), are equiv classes [z,] of p-cycles, z, ~ 2, + dap+1 (homology class).
Poincare duality: H, ~ H,,_,, where m = dimM/.

p-th Betti number, b, = dimH,(M,R).

. Cohomology

p-th de Rham cohomology group of M is,
HY = 7ZP/BP | (2.11)
where BP C ZP C AP are exact forms, closed forms, and differential p-forms, respectively.

Eliments of HP are equiv classes [wp] of closed p-forms, w, >~ wy, + da,—1 (cohomology class).

. Relationship

Inner product (period of w), over z,),

(e = [ (2.12)

P

is bilinear and non-degenerate, thus giving an isom (de Rham), H, ~ HP.

The notion of cohomology will naturally be refined for the manifolds with additional structures,
which we will turn to tomorrow!

3 Kahler geometry

Mflds of SU(3) hol, important for susy, happen to be a complex mfld in particular. Let us start by
recalling some basics of complex manifolds.

3.1

Complex manifolds

Def: a complex manifold M is a diff manifold that admits an open cover {U, }4c 4 and coordinate
maps, zq : Uy — C" s.t. 240 zb_l is hol. on z,(Uyp) C C™ for all a,b € A.

i.e. z, give local hol coords, (2},---,2%), and on Uy, 2% = 2b(zg) are hol (no dep on 2{,)
An atlas {(U,, 24)} defines a complex structure on M and n =: dimc M.
Not all real manifolds admit a complex str. (e.g. S? is complex, but S?" for n > 1 are not).

An obvious example: C™ with a single coord patch, with coords, z/=b ™. By writing 2/ =

2/ 4+ iyl and ¥ = 2/ —iyl, j = 1,---,m, it can be thought of as a real mfld with coords,
I=bm and ™1 =47 for j = 1,--- ,m. Note that
0 1,0 0 = 0 1,0 0
=5 2% ey %= g5~ 3la i) (3.13)
and that ‘ ‘ ' . ' ‘
dz/ =da’ +idy’ , dZ7 =da’ —idy’ . (3.14)

As a real mfld, complex mflds can be seen orientable always.



3.2

Tangent bundle T'(M) complexified to Tc(M) = T'(M) ® C so that a tangent vector, v, can have
complex coefficients. Given a complex structure, v decomposes as the holo and the antiholo
parts, and the bundle splits as

Te(M) =T (M) @ TOY (M) | (3.15)
where 719 and T%! are spanned, resp., by {9;} and {9;}.
A (holo?) section of T1(M) is called a holo v.f. (its component fns are holo).

Cotangent bundle
Te(M)* =T (M)* & T (M)* | (3.16)

where T10(M)* and T%!(M)* are spanned, resp., by {dz*} and {dz'}.

(p, q)-forms as a section of APTHO(M)* A TOL(M)*. The space of (p,q)-forms is denoted by
AP-9 and that of r-forms by A" (sections of A"T¢(M)*).

obviously, AP4 = A%P; A" = € AP4.
ptg=r

d= 0+ 0, with 0 : AP — APT14 and 0 : AP4 — AP9TL satisfying

9>=0; 9*°=0; and 90+00=0. (3.17)
w € AP is a hol p-form if it is of type (p,0) and dw = 0 and is an anti-hol p-form if it is of type
(0,p) and dw = 0.

The space of hol. p-forms is denoted by QP (M).

Kahler manifolds

Hermitian metric

a hermitian metric is a covariant tensor field of the form, Y- g;5(z, 2)dz' ® dz7 s.t. g;5(2,2) =
9ji(2,Z). and g;; is positive definite (i.e. Vo' € C",v'g;507 > 0 with equality only if v = 0).

To a hermitian metric is associated a two-form field w =14 gﬁdzi A dZ? (the fund form); w is
a real (1,1)-form and w™ ~ g(z,2z)dz! A --- A da?®" is a volume form.

Inverse of 935 is gij s.t. gﬁgj,; = 5% and gz‘jgkj = 55-
Kahler metric

a hermitian metric g whose associated fund form w is closed is a Kahler metric; a complex mfld
endowed with a Kédhler metric is a K&hler manifold (and w is the Kéhler form).

dw=0=0w=0w=0= B B
99k = 039k, 0idjk = Okji » (3.18)

implying the only non-vanishing components of the Riemannian connection are Ffj = gsz)igj;

and I’% = g”_“('}igl; = holo and anti-holo tangent spaces do not mix under parallel transport.
Remark: a complex manifold admits a hermitian metric, but may not admit a Kahler metric.

Remark: a complex submanifold of a Kéhler manifold is again Kéhler (induced metric).



3.3

Kaéhler potential
(3.18) says that locally there exists a real Kéhler potential K s.t.
95 = 0:0;K (w = i00K) . (3.19)
K is not unique: e.g. K(z,%) and K(z,2) + f(2) + f(2) define the same metric.
Riemann curvature tensor, Ricci tensor, and Ricci-form:

Exercise: Rz = —0i05951 + 9" (0igkn ) (959,7) (sign convenction: [V, V3] Vj, = —Rijlel) are
the only non-vanishing components.

Exercise: R;; = —0;0;(log (detg)).
Ricci-form (of type (1,1)) is

R = Z'Rj,;dzj A dz* = —id0(log (detg)); dR =0 (and R = R). (3.20)
R only depends on the volume form of the Kéhler metric and on the complex str.

Under the change g — ¢/,

det(gél)) , (3.21)

det(gx7)

where the ratio in log is globally well-defined non-vanishing fn on M and hence, its cohomology
class is metric independent.

Example: P" = {[20:---:2"] | 22 € C,A € C*}/(z ~ A2)

R(9') = R(g) — iddlog <

Exercise: Complex - U, = {2* =1} ~ C" gives an atlas and a complex str (transition is holo).
Exercise: Kéhler - on U, the locally defined Kahler potential is K = log(1+3_,_, | 2%|2), leading
to the Fubini-Study metric.

Holonomy group of Kiahler manifolds

Holonomy of a Kéhler manifold

(3.18) implied that parallel transport does not mix elts of T19(M) and T%!(M).

Since the length of a vector does not change under parallel transport, the holonomy is U(n),
where n = dimc (M).

elts of TO(M) (T%!(M)) transform as n (f).
Holonomy of a Ricci-flat Kéhler manifold

Parallel transport:
1 . . o
(5VP = —§5GMNRMN PQVQ = oV = —6aklel— 1jVJ y (322)
and hence, —5akZRkl— ¢ is an elt of u(n).
J

Its trace, proportional to Ricci tensor, generates the u(1) part in u(n) ~ su(n) @ u(1). Thus,
the holonomy group of a Ricci-flat K&hler manifold is a subgroup of SU(n).

Converse is also true:

2n-dim manifold with U(n) (SU(n)) holonomy admits a (Ricci-flat) Kéhler metric.



3.4

Cohomology of Complex and Kahler manifolds

Cohomology theory on real manifolds also applies to complex and Kéahler manifolds. But one
can use the complex structure to define Dolbeault cohomology (0-cohomology):

Pq
P — _ Zé
0 OApa—1"’

(3.23)
where 0API~1 C Zg’q C AP are 0-exact, O closed (p, q) forms.

Remark: 0-Poincare lemma (Dolbeault): Dolbeault cohomology groups are locally trivial.
Hodge numbers, h?9(M) = dime(HZ?(M))

for a Ké&hler manifold, often arranged in the Hodge diamond (draw, say, for 3-fold!).

Inner product between two (p, ¢)-forms:

1

p = ]Tq,aoil-.-ipgl...;q(Z)dZ“ Ao Ndz' AdE N NdE (3.24)
1 . , _ ,
v o= qu!%lmipjl...jq(Z)dZ” Ao N2 NdE A NdF (3.25)
define . o
(e 9)(2) = plgl Fivipiia (2)ptreiia(z) (3.26)

where 1;@131(2,) = gitk1 ... givkp ghin "'glq;q¢k1-~~kpfl~~-fq<z)' Then the i.p. is:

wn
)= [ puE. (3.27)
M n:
Hodge-x: AP7 — A™~9"~P ig defined so that
w™ .
(0, ¥)(2) = p(2) Ax(z) (3.28)
Where 'l[} = ﬁq/}“zpjliqdzll /\ e A dz]q — ﬁ’lﬁjquzlzpdzjl N /\ dzjq /\ dgll N /\ dglp
Exercise: *t) = %1}
Exercise: x x 1) = (—1)P*94), where 1 is of type (p,q).
Exercise: On a 3-fold, Q € 430, o € A%,
*Q=—i), xa=ia. (3.29)
0* defined via the i.p. (9%, ) = (1, 0¢), ¥ € AP4 and p € AP4~L,
Exercise: 0% = — * 0%
O-Laplacian: Ay = 90* + 0*0: Ap,q — AP4

HP = (i € AP | Agip = 0}

(Exercise:) On a compact complex manifold, ¢ is harmonic if and only if 9y = 9*1) = 0.



Hodge Theorem: AP has a unique orthogonal decomposition
AP — P @ HAPI—1 oy o APatl qu = HPY @ AP = Hg,q ~ WP (3.30)
i.e., every O-cohomology class has a unique harmonic rep and vice versa.

Similarly, 0-Laplacian: Ay = 99" + 0*0 and the Laplacian A = dd* + d*d. Then, very impor-
tantly, (Exercise)

Ay =20y = %Ad , (3.31)
from which lots of interesting consequences follow:
The three harmonicities agree.
Ay does not change the index type.

On a Kéhler manifold, every holo p-form is harmonic (if o € QP C APY da = 0 and 0*a = 0),
and every harmonic (p,0) form is holo (Aa = 0 implies da = 0, which, for a € HP" means
a € OP).

> P4 =b, (U(n) invariant decomposition, u = (i,1)).
ptg=r

Constraints on the Hodge numbers (draw Hodge diagram!)

hP? = h2P (complex conjugate)

hP? = p=2"=P ([Ag, x| = 0) = R"7P174,

hPP >0 (wP is closed but not exact).

h%9 =1 for a connected manifold.

Summary: all these only leave five independent Hodge numbers (A0, h20 a1 p21 p3.0)
1st Chern class

It has been shown Ricci-form leads to a metric-indep cohomology class and we define

(M) = — [;TR] c HY(M,C)n H*(M,R) , (3.32)

4 Calabi-Yau geometry

4.1

Calabi-Yau manifolds

Def. A CY manifold is a compact Kéhler manifold with vanishing first Chern class.
Ricci-flat Kahler manifold has vanishing first Chern class, but the converse is not trivial.

Calabi’s conjecture: Every rep of ¢;(M) is the Ricci-form of a Kéhler metric (proved that if
there is one, it must be unique).

Yau’s proof: such a metric always exists (his statement: let M be a compact Kéahler manifold,
w its Kéhler form, ¢; (M) its first Chern class. Any closed real two-form of type (1,1) belonging
to 2mey (M) is the Ricci form of one and only one Kéhler metric in the class of w).

10



4.2

For vanishing c¢;, a Kahler manifold with ¢; = 0 admits a unique Ricci-flat Kahler form in each
Kahler class.

c1 = 0 is necessary to have a Ricci-flat metric. The other way is the hard bit (Yau’s proof is for
existence and does not give the metric (no CY metric has been constructed)).

Sum: Compact Kahler manifolds with a vanishing c¢; are precisely those admitting a Kahler
metric with zero Ricci tensor (equivalently, with restricted holonomy group contained in SU (n)).

We shall assume that CY manifolds have precisely SU(n) as their holonomy group.
Reduced holonomy group leads to more susy in 4d and hence is bad.

Alternative definition: Calabi-Yau manifolds are compact Kéhler manifolds with trivial canon-
ical bundle.

Canonical Lb.: K = A"TY0(M)*, whose sections are forms of type (n,0).
Exercise: [V, Vj] Wiy i, = —R;5wiy .., , which means that ¢1(K) = —c1(M) and hence,

Cl(M):Oﬁcl(K):O. (433)

Thus, K ~ O and there must exist a (unique) globally defined nowhere vanishing holo n-form
Qon M

) is covariantly constant (!!!), meaning in particular that the holonomy is in SU(n).

Q can locally be written as €,..;, = f(2)€i,..i,: It is holo since 9;2,...;,, = V;€2,...j,, = 0.
(1 can explicitly be constructed using the covariantly constant spinor: €2, = eTfyijke.
Exercise: show that such an 2 satisfies all the properties above...

Q is unique (if €’ has the same property, as it’s a top form, must have ' = fQ. Since 9Q' = 0,
f must be holo and hence, is constant.

Existence of Q implies ¢; = 0; as R = i09log(det(g;7)) = i@élog(Qil...inﬁgl,,,gngiljl o ginin),
implying ¢; = 0.

Cohomology of Calabi-Yau manifolds

Hodge diagram (draw!)

4.3

Moduli space of Calabi-Yau geometries (three-folds)

Given a CY background, the parameters deforming it naturally correspond to massless fields
in 4d, as they corresponds to parameters that take one vacuum state into a nearby equivalent
one.

Local structure of CY geometries:

Q: Space of Ricci-flat metrics for M? g, and g, + dg,, both satisfy R,, = 0. What are the
possible fluctuations?

A: (Some metric deformations only describe coordinate changes and can be eliminated by fixing
the gauge by V”ég,,, = 0) Then possible fluctuations should satisfy (Lichnerowics) (Exercise)

VPV 508G + 2R, ", 70955 =0 . (4.34)

11



Kéhlerity) Its solutions split to mixed type, dg,5, and pure type, dg;; and dg;;, and hence, we
1] J 1]
can analyse them separately.

. For a mixed type: we can associate the real (1,1) form 5gi3dzi A d% and is harmonic iff the

variation dg;; satisfies Lichnerowicz

iterpretation: = hl'! real parameters. Correspond to a cohom non-trivial Kihler form change,
dw. Yau says that for each class [w + dw] there is a unique Ricci flat K&hler metric. Thus, it
should count Ricci-flat metrics.

For NS two-form By, there are internal (1,1)-form zero modes B;; which are additional (mass-
less) scalars in 4d. These combine with the Kahler form w to have it complexified.

. Similarly, for a pure type, one may associate the complex (2, 1)-form,

Oy Ogpndz? A dz" A dZ (4.35)
which is harmonic iff Lichnerwowics holds.

Interpretation: = h%*! complex parameters t*. They generate pure index components for the
metric. Thus, should correspond to complex structure deformations.

Derivatives of ) = %Qijkdz" AdzI A dzF are

1 OQW i ; | i i 8(dzk)
Oafd = gy 2rde Nded N d¥ 4 S Qujede’ NI NS0 (4.36)

defines an element in H3Y @ H*! (d commutes with 9,). Claim: the second term is (4.35), i.e.,

1 . S _ 1 . 70g5r
Xa = i(XOt)z’jl}de ANdz) A dzk s with (Xa)z‘jfg = —§Qijl a'il;l . (4'37)

Thus, €2 encodes the complex structure dependence.

The moduli space metric

Most general metric that can be written in terms of the background quantities:
1
ds? = v /M " 9”7 (09up09ve —|—5Bup5Bl,o—)\/§d6:E (4.38)
1 =T
= 57 /M 9" 9" [09in0g51 + (39:169x; + 6B;10Byj)] v/9d’x . (4.39)
Simple yet important observation: block-diagonal, separating the variation of complex structure
and that of Kahler class!
The (2,1) forms

Have the inverse relation to (4.35):

1
S5g= = —
Y5 = e

_ 1 _ ..
QM (o)t with [|Q]|* = 59,%9”’“ constant??? . (4.40)

the metric, 2G,5dt" ® d#? := the complex str part leads to

_fMXa/\XB

oo (4.41)

ZGQB =
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Since % = ko) + Xa, We have

o 0 -
3=—————logi | QAQ 4.42
Cap = = 5ia 5308 /M AN, (4.42)
and hence,
K*! = —log <1/ Q/\Q) . (4.43)
M

The (1,1) forms

The i.p. on H'! corresponding to the (4.39) is

pv pzjaklg gk]\fd(jx - p N*0 (444)
2V 2V

for real (1,1) forms.

With a real basis of harmonic (1,1) forms, e,, the metric on moduli space can be written as

0o 0

w? Jub g (4.45)

1
Gal_) = 2 G(eﬂh 6b)

_Kl,l

_ 4 3
where e —SIMw.

Type II compactifications on a Calabi-Yau manifold

Having explored the geometric meaning of h! and h'!, could study their relevance to dofs in
eff. theory in type II supergravities. Here we summarise the result of those analysis.

CY3 compactification - 10d origin of the 4d massless fields

. ITA sugra (non-chiral)

10d Field contents, {Gyn, Byn, ¢, Cors CMNP(awﬁ)a x5}
4d N = 2. gravity, hyper, vector (irreps with spin < 2).

(1) Gu,,:0717273,¢:,1/};7 C,, = gavtity mult.

Thanks to supersymmetry, may just work out bosonic states:
(2) O3 = A% (M)

(3) Gi; and Bj; = w® (hM1).
(4) Gij =t (1),

(5) Cijp = C* (h»1)
(6) ¢ and B, = S (1)
(7) Ciji = C (1)

grouping: !!! (in the end, 1 gravity mult, A" vec mult. and h%' + 1 hypermult(incl. universal
one from S and C) (or, 21 + 4h%1 + 4 scalar fields, h!'! + 1 vector fields)

. 1IB sugra

13



10d Field contents, {Garn. Baw, ¢, C, Carn, Carnvro( 05y 955, x ), 10)}

grouping: !!! (in the end, 1 gravity, h*! vec mult. and h''! + 1 hypermult(incl. universal one
from S and C) (or, 2h*! + 4hV! + 4 scalar fields, h>' + 1 vector fields)

Note that ITA and IIB result in the same spectrum upon exchanging the Hodge numbers,
indicating “mirror” symmetry.

5.1 Flux: omitted!

6 Constructing a Calabi-Yau manifold: algebro-geometrical tech-

6.1

6.2

niques
Quintic

Why CY? (see, G.Tian, “Canonical Metrics in Kédhler Geometry,” Birkhauser, 200.: given the
Fubini-study metric induced to CY, computing the volume form, and read off the first Chern
explicitly, resulting in,

a(M)~(n+1-d)[w] . (6.46)

h1! =1 (ambient induced, A1t = 1).
h?*' = 101 (appearing as the coefficient counting: 126-24-1)(or, via computing x = —200 first).
Chern class, Intersection numbers, Kéahler cones, etc.

CICY
E.g.

[P)l
{IP"‘ 1 4

Ll ] , (6.47)

What does it mean?

Why CY?

Why smooth? Bertini’s theorem (c.f. base point freeness...)

hY1 = 2 (induced from the ambient? need to be careful - Lefschetz hyperplane)
h?! = 86(or, x = —168)

This way, CICYs have been “classified”, leading to about 8000 compact CYs

gCICY
E.g.

Pl
K

3 _1] , (6.48)

What does it mean?

Why CY?

14



- Why smooth? No reason here!

- h! =2 (induced from the ambient? need to be careful, no Lefschetz, need to do bundle-valued
cohomology, h! (T X*) = h*(TX))

- h?! = 46(again, no counting, need to do bundle-valued cohomology, h'(TX), or, xy = —88)

15
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