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Abstract

In this series of six-hour lectures, we give an introduction to supersymmetric compactifications
of string theory. For the first two hours, the idea of Kaluza-Klein reduction is reviewed and some
rudiments of complex and Kähler geometries, as well as the notion of holonomy, are introduced.
For the second two hours, Calabi-Yau property is defined (and an example provided, depending on
how fast we proceed). The moduli space is also explored for Calabi-Yau geometries. Finally, for
the last two hours, we compactify type II supergravities on a Calabi-Yau three-fold and study the
resulting effective theories. If time permitted, before closing, we shall either survey construction
methods for a Calabi-Yau three-fold or discuss a couple of famous flux compactification scenarios
of type II string theory.
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Prerequisites

Basic notions of

• differential geometry/topology on a real manifold (Riemannian metric, covariant derivative and
differential forms)

• representations of a rotation (spinorial representation in particular)

Refs

• Geometry:

- M.Nakahara, “Geometry, Topology and Physics”

- P.Candelas, “Lectures on Complex Manifolds”

• Useful reviews:

- A. Font and S. Theisen, “Introduction to String Compactification,” Lect.Notes Phys.668 (2005)
101-181 (main source)

- M. Douglas and S. Kachru, “Flux Compactification,” Rev.Mod.Phys. 79 (2007) 733-796

- M. Grana, “Flux compactifications in string theory: A Comprehensive review,” Phys.Rept. 423
(2006) 91-158

• Moduli spaces:

- P. Candelas and X. de La Ossa, Moduli Space of Calabi-Yau Manifolds, Nucl.Phys. B355 (1991)
455-481

• Textbook:

- T.Hubsch, Calabi-Yau Manifolds - A Bestiary for Physicists, World Scientific
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1 Introduction

1.1 Restrictions on the string theory background

• Polyakov action

SP = − 1

4πα′

∫
Σ

d2σ
√
−hhαβ∂αXM∂βX

NGMN (X) , (1.1)

where X : Σ ↪→M with M = 0, · · · , D − 1 (c.f. α = 0, 1); α′ = l2s .

- 2d NLSM with target space M (free if GMN (X) = ηMN )

- SP is Weyl invariant (local rescaling, hαβ → eω(σ)hαβ); also demanded after quantisation

- Anomalies produce, β
(G)
MN = α′RMN +O(α′2) and β = 0 gives Einstein equations.

• Compactification

- Only those backgrounds that solve the β = 0 are viable (pert.) string backgrounds

- Other beta functions for, BMN and φ, vanish for φ = const. and B = 0 only if D = 10 (taking
into account of susy partners of X and h).

- Thus,M10 is a Ricci-flat manifold with Lorentzian signature (NB. O(α′2) corrections ignored).

- A way to make the space-time look four-dimensional and Lorentz inv.:

M10 =M4 ×K6 , (1.2)

where M4 is either AdS, Mink, or dS and K6 is “small” (than length scales already probed).

- Eff. theory on M4 determined by the geometry of K6 (physics det. by geometry).

- E.g. [CHSW, ’85] with K6 = CY3, the 4d theory has a minimal susy and χ(K6) counts matters.

1.2 The aim of the lectures

• Introduction to string compactifications on a Calabi-Yau manifold (c.f. there are other com-
pactifications, too!)

2 KK reduction

• KK unified gravity and EM in 4d by deriving the both from pure 5d gravity. Can this be
generalised for string theory compactifications from 10d to 4d?

• In this lecture, KK reduction will be applied to the field theory limit of string theory, which
neglects the tower of massive excitation modes and reproduces the scattering amplitudes.

2.1 Dimensional reduction

• D to d dimensions. A toy example: D = 5 to d = 4 for a real massless scalar φ,

S = −1

2

∫
d5x∂Mφ∂

Mφ , (2.3)

where the spacetime has the product form M5 = Mink4 × S1
R with η = (−,+,+,+,+).
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- Coordinates: xM = (xµ, y), with y ∈ [0, 2πR].

- E.o.m.: �φ = 0⇒ ∂µ∂
µφ+ ∂2

yφ = 0

- Fourier expansion: φ(x, y) = 1√
2πR

∑
φn(x)einy/R ⇒ ∂µ∂

µφn − n2/R2φn = 0

- i.e. in 4d, there’s a massless scalar φ0 and an infinite tower of massive scalars.

- In the limit R→ 0, only the zero mode φ0 remains light and the other very massive modes are
discarded (dimensional reduction)

- Remark: the notion of zero modes generalises to curved internal compact spaces too, but zero
modes do not have to be indep. of the internal coordinates in general (consistency of the
discarding the heavy modes in the sense that the lower-dim eom also solves the full-dim one
has to be questioned in general).

• Not just scalar: branching of D-dim Lorentz reps, SO(1, d− 1)× SO(D − d) ⊂ SO(1, D − 1).

- E.g. AM = (Aµ=0,...,d−1, Am=d,··· ,D−1) (branching of D = (d,1)⊕ (1,D− d))

- E.g. BMN = (Bµν , Bµm, Bmn)

• Not just bosonic fields

- Our interest lies in compactification of susy theories with a certain number of conserved spinorial
charges, QI=1,··· ,N , and hence, branching of spinors is relevent.

- Remark: Dirac spinors and Gamma matrices, ΓM = (Γµ,Γm), are of size 2[D2 ] and the lower-dim
gamma matrices act on all the components of higher-dim spinor.

- E.g. D = 11 spinor to d = 4: 32 = (4,8), all three reps are Majorana spinors.

2.2 Supersymmetry and Calabi-Yau-ness

• Sugras in high dimensions

- D = 11, N = 1; D = 10, N = (1, 1) (non-chiral, IIA), D = 10, N = (2, 0) (chiral, IIB),
D = 10, N = 1 may couple to SYM with G = E8 × E8 or SO(32).

- The sugras above are a low-energy limit of various string theories.

• 4d susy theories are obtained by dimensionally reducing the above (i.e. torus compactification).

- Susy in 4d is attractive but too many are not desirable (non-chiral); beyond torus comp.!

- Remark: Susy is not just phenomenologically desirable but supersymmetric string compactifi-
cations are stable (c.f. tachyons or tadpoles of non-susy vacua).

• Let us have the gravity back in. Dynamics (eom) should allow for

MD =Md ×KD−d , (2.4)

in which case the system is said to admit spontaneous compactification.

- With the vev ansatz, 〈GMN (x, y)〉 = gµν(x)dxµdxν + gmn(y)dymdyn (which can be generalised
to a warped geometry maintaining maximal space-time symmetry in Md), we demand susy in
the effective theory (with the eoms to be checked a posteriori).
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- i.e. There must be a spinor field, ε, for which 〈δεΦb〉 ∼ 〈Φf 〉 = 0 and 〈δεΦf 〉 ∼ 〈Φb〉 = 0; the
former is zero since fermions are zero for maximal symmetry inMd (they transform non-trivially
under Lorentz, for instance) and we only need to demand the latter.

- In sugra, there’s a gravitino, ψM that transforms as δεψM = ∇M ε + · · · , where · · · contains
other bosonic fields (dilaton, H and F ’s) which we turn off.

- Thus, we demand that 〈∇M ε〉 ≡ ∇M ε = 0 ⇒ ∇mε = 0 and ∇µε = 0.

• Consequence of the existence of Killing spinors

- (dropping the bars from now) [∇M ,∇N ] ε = 1
4RMNPQΓPQε = 0, where ΓAB = 1

2 [ΓA,ΓB].

- Thus, RMQ = 0 (RMQΓ
Q
ε = 0 follows from ΓNΓPQ = ΓNPQ + GNPΓQ − GNQΓP and the

Bianchi, RMNPQ +RMQNP +RMPQN = 0).

- Thus, Md is Mink and KD−d admits a Ricci-flat metric.

• Detour: Holonomy

- On an m-dim mfld, parallel transport of a vector v along a closed curve gives Uv with U ∈ O(m);
H = {U} is the holonomy group ⊂ O(m) (SO(m), if orientable).

- Rmk: δV P = −12
δ a

MNR P
MN QV

Q implies that for a simply connected manifold to have a
non-trivial holonomy it has to have curvature.

- We restrict to D = 10 and d = 4 case from now. Cov const spinor, ε, is a singlet under H. But
it is a SO(6) spinor and has R-/L-chirality piece transforming as 4 (4) of SO(6) ' SU(4).

- Suppose H = SU(3). Since 4SU(4) = 3SU(3) + 1SU(3), there is one cov const spinor of positive
and one of negative chirality, ε±, so that the allowed susy parameter takes the form,

ε = εR ⊗ ε+(y) + εL ⊗ ε−(y) , (2.5)

with εL = ε∗R and ε−(y) = ε∗+(y) in a Majorana basis for ε.

• Schematic def . a 2n-dim compact Riemannian manifold with a metric whose holonomy is
SU(n) ⊂ SO(2n) is called a Calabi-Yau manifold.

• A glimpse at Calabi-Yau manifolds (obvious by now)

- Admit a covariantly constant spinor

- Ricci flat.

• Remarks

- No SU(n) holonomy metrics are known except for the n = 1 case.

- Manifolds with a special holonomy appear a lot in string theory. Berger’s classification for a
simply connected manifold (refs):

U(n), SU(n), Sp(n/2), Sp(n/2) · Sp(1), G2(7d), Spin(7)(8d) (2.6)
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2.3 Zero modes, harmonic forms and cohomologies

• Generalities of KK reduction on a curved internal space: Φµν···mn···(x, y)

- Expand around a vev, Φµ···m···(x, y) = 〈Φµ···m···(x, y)〉+ φµ···m···(x, y)

- D-dim eom under the split metric ansatz:

Odφ+Ointφ = 0 , (2.7)

where Od and Oint are diff operators of order p = 1 or 2.

- Expand φµ···m··· in terms of eigenfunctions Y a
m···(y) of Oint in KD−d (eig. val λa):

φµ···m···(x, y) =
∑

φaµ···(x)Y a
m···(y) . (2.8)

- Remark: λa ∼ 1/Rp det. mass of φaµ···(x) and zero modes of Oint corresp. to massless fields.

• Caution in trunctation of heavy modes

- In general not consistent to simply set the massive fields to zero (they might induce interactions
of φ0 not suppressed by heavy mass, e.g. φ0φ0φh).

- Even when the heavy fields can’t be naively discarded, the eff action might be consistently det.

• Examples

- Scalar: Oint = ∆ has a unique scalar zero mode, leading to a single massless scalar in d dim.

- Dirac: Oint = /∇(= Γm ·∇m) has its zero mode count dep. on topology of KD−d (index theorem).

- p-form: the action is

Sp = − 1

2(p+ 1)!

∫
MD

Fp+1 ∧ ?Fp+1 , (2.9)

leading to the eom ∆DAp = 0, for ∆D = dd∗+d∗d, upon fixing the gauge freedom by d∗Ap = 0.
Since Oint = ∆int, the zero mode counting becomes a cohomology problem. p-form in D-dim
gives “bn” massless fields, n = 0, · · · , p, that correspond to (p− n)-forms in d-dim.

• Detour: (Co)homologies (Betti numbers) in relation with zero modes and harmonic forms

- to come shortly after the following quick remarks.

• Remark: Compactification of string theory v.s. that of its field theoretic limit

- At length scales near/below ls =
√
α′, classical geomtry has to be modified to ‘stringy geometry’.

- Different geometries may correspond to the same physics, e.g. T-duality, mirror symmetry, etc.

- In this lecture, we shall mainly consider sugras, as the field theory limit of string theory.

• Back to the detour: (Co)homologies and Betti numbers

1. Homology

- On a smooth, connected (real) manifold, M , the p-th homology group of M is,

Hp = Zp/Bp , (2.10)

where Bp ⊂ Zp ⊂ Cp are Cp = {ap =
∑

i ciNi | Ni are p-dim oriented submflds} (chains),
Zp = {ap | ∂ap = ∅} (cycles), and Bp = {∂ap+1} (boundaries).
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- Eliments of Hp are equiv classes [zp] of p-cycles, zp ' zp + ∂ap+1 (homology class).

- Poincare duality: Hp ' Hm−p, where m = dimM .

- p-th Betti number, bp = dimHp(M,R).

2. Cohomology

- p-th de Rham cohomology group of M is,

Hp = Zp/Bp , (2.11)

where Bp ⊂ Zp ⊂ Ap are exact forms, closed forms, and differential p-forms, respectively.

- Eliments of Hp are equiv classes [ωp] of closed p-forms, ωp ' ωp + dαp−1 (cohomology class).

3. Relationship

- Inner product (period of ωp over zp),

π(zp, ωp) =

∫
zp

ωp , (2.12)

is bilinear and non-degenerate, thus giving an isom (de Rham), Hp ' Hp.

• The notion of cohomology will naturally be refined for the manifolds with additional structures,
which we will turn to tomorrow!

3 Kähler geometry

Mflds of SU(3) hol, important for susy, happen to be a complex mfld in particular. Let us start by
recalling some basics of complex manifolds.

3.1 Complex manifolds

• Def: a complex manifold M is a diff manifold that admits an open cover {Ua}a∈A and coordinate
maps, za : Ua → Cn s.t. za ◦ z−1

b is hol. on zb(Uab) ⊂ Cn for all a, b ∈ A.

- i.e. za give local hol coords, (z1
a, · · · , zna ), and on Uab, z

i
a = f iab(z

j
b) are hol (no dep on z̄jb).

- An atlas {(Ua, za)} defines a complex structure on M and n =: dimCM .

- Not all real manifolds admit a complex str. (e.g. S2 is complex, but S2n for n > 1 are not).

• An obvious example: Cm with a single coord patch, with coords, zj=1,··· ,m. By writing zj =
xj + iyj and z̄j = xj − iyj , j = 1, · · · ,m, it can be thought of as a real mfld with coords,
xj=1,··· ,m and xm+j ≡ yj for j = 1, · · · ,m. Note that

∂j ≡
∂

∂zj
=

1

2
(
∂

∂xj
− i ∂

∂yj
) , ∂̄j ≡

∂

∂z̄j
=

1

2
(
∂

∂xj
+ i

∂

∂yj
) , (3.13)

and that
dzj = dxj + idyj , dz̄j = dxj − idyj . (3.14)

As a real mfld, complex mflds can be seen orientable always.
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• Tangent bundle T (M) complexified to TC(M) = T (M)⊗C so that a tangent vector, v, can have
complex coefficients. Given a complex structure, v decomposes as the holo and the antiholo
parts, and the bundle splits as

TC(M) = T 1,0(M)⊕ T 0,1(M) , (3.15)

where T 1,0 and T 0,1 are spanned, resp., by {∂i} and {∂̄i}.

- A (holo?) section of T 1,0(M) is called a holo v.f. (its component fns are holo).

• Cotangent bundle
TC(M)∗ = T 1,0(M)∗ ⊕ T 0,1(M)∗ , (3.16)

where T 1,0(M)∗ and T 0,1(M)∗ are spanned, resp., by {dzi} and {dz̄i}.

• (p, q)-forms as a section of ∧pT 1,0(M)∗ ∧q T 0,1(M)∗. The space of (p, q)-forms is denoted by
Ap,q and that of r-forms by Ar (sections of ∧rTC(M)∗).

- obviously, Ap,q = Aq,p; Ar =
⊕

p+q=r
Ap,q.

- d = ∂ + ∂̄, with ∂ : Ap,q → Ap+1,q and ∂̄ : Ap,q → Ap,q+1, satisfying

∂2 = 0; ∂̄2 = 0; and ∂∂̄ + ∂̄∂ = 0 . (3.17)

• ω ∈ Ap is a hol p-form if it is of type (p, 0) and ∂̄ω = 0 and is an anti-hol p-form if it is of type
(0, p) and ∂ω = 0.

- The space of hol. p-forms is denoted by Ωp(M).

3.2 Kähler manifolds

• Hermitian metric

- a hermitian metric is a covariant tensor field of the form,
∑
gij̄(z, z̄)dz

i ⊗ dz̄j s.t. gij̄(z, z̄) =

gjī(z, z̄). and gij̄ is positive definite (i.e. ∀vi ∈ Cn, vigij̄ v̄j̄ ≥ 0 with equality only if v = 0).

- To a hermitian metric is associated a two-form field ω = i
∑
gij̄dz

i ∧ dz̄j (the fund form); ω is
a real (1,1)-form and ωn ∼ g(z, z̄)dx1 ∧ · · · ∧ dx2n is a volume form.

- Inverse of gij̄ is gij̄ s.t. gjīgjk̄ = δī
k̄

and gij̄g
kj̄ = δki .

• Kähler metric

- a hermitian metric g whose associated fund form ω is closed is a Kähler metric; a complex mfld
endowed with a Kähler metric is a Kähler manifold (and ω is the Kähler form).

- dω = 0⇒ ∂ω = ∂̄ω = 0⇒
∂igjk̄ = ∂jgik̄, ∂̄igjk̄ = ∂̄kgjī , (3.18)

implying the only non-vanishing components of the Riemannian connection are Γkij = gkl̄∂igjl̄
and Γk̄

īj̄
= glk̄∂̄īglj̄ ⇒ holo and anti-holo tangent spaces do not mix under parallel transport.

- Remark: a complex manifold admits a hermitian metric, but may not admit a Kähler metric.

- Remark: a complex submanifold of a Kähler manifold is again Kähler (induced metric).
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• Kähler potential

- (3.18) says that locally there exists a real Kähler potential K s.t.

gij̄ = ∂i∂̄jK (ω = i∂∂̄K) . (3.19)

- K is not unique: e.g. K(z, z̄) and K(z, z̄) + f(z) + f̄(z̄) define the same metric.

• Riemann curvature tensor, Ricci tensor, and Ricci-form:

- Exercise: Rij̄kl̄ = −∂i∂̄j̄gkl̄ + gmn̄(∂igkn̄)(∂̄j̄gml̄) (sign convenction:
[
∇i,∇j̄

]
Vk = −R l

ij̄k
Vl) are

the only non-vanishing components.

- Exercise: Rij̄ = −∂i∂̄j̄(log (detg)).

- Ricci-form (of type (1,1)) is

R = iRjk̄dz
j ∧ dz̄k = −i∂∂̄(log (detg)); dR = 0 (and R = R̄). (3.20)

- R only depends on the volume form of the Kähler metric and on the complex str.

- Under the change g → g′,

R(g′) = R(g)− i∂∂̄log

(
det(g′

kl̄
)

det(gkl̄)

)
, (3.21)

where the ratio in log is globally well-defined non-vanishing fn on M and hence, its cohomology
class is metric independent.

• Example: Pn = {
[
z0 : · · · : zn

]
| za ∈ C, λ ∈ C∗}/(z ∼ λz)

- Exercise: Complex - Ua = {za = 1} ' Cn gives an atlas and a complex str (transition is holo).

- Exercise: Kähler - on Ua, the locally defined Kähler potential is K = log(1+
∑

b6=a |zb|2), leading
to the Fubini-Study metric.

3.3 Holonomy group of Kähler manifolds

• Holonomy of a Kähler manifold

- (3.18) implied that parallel transport does not mix elts of T 1,0(M) and T 0,1(M).

- Since the length of a vector does not change under parallel transport, the holonomy is U(n),
where n = dimC(M).

- elts of T 1,0(M) (T 0,1(M)) transform as n (n̄).

• Holonomy of a Ricci-flat Kähler manifold

- Parallel transport:

δV P = −1

2
δaMNR P

MN QV
Q ⇒ δV i = −δakl̄R i

kl̄ jV
j , (3.22)

and hence, −δakl̄R i
kl̄ j

is an elt of u(n).

- Its trace, proportional to Ricci tensor, generates the u(1) part in u(n) ' su(n) ⊕ u(1). Thus,
the holonomy group of a Ricci-flat Kähler manifold is a subgroup of SU(n).

• Converse is also true:

- 2n-dim manifold with U(n) (SU(n)) holonomy admits a (Ricci-flat) Kähler metric.
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3.4 Cohomology of Complex and Kähler manifolds

• Cohomology theory on real manifolds also applies to complex and Kähler manifolds. But one
can use the complex structure to define Dolbeault cohomology (∂̄-cohomology):

Hp,q

∂̄
=

Zp,q
∂̄

∂̄Ap,q−1
, (3.23)

where ∂̄Ap,q−1 ⊂ Zp,q
∂̄
⊂ Ap,q are ∂̄-exact, ∂̄ closed (p, q) forms.

- Remark: ∂̄-Poincare lemma (Dolbeault): Dolbeault cohomology groups are locally trivial.

- Hodge numbers, hp,q(M) = dimC(Hp,q

∂̄
(M))

- for a Kähler manifold, often arranged in the Hodge diamond (draw, say, for 3-fold!).

• Inner product between two (p, q)-forms:

ϕ =
1

p!q!
ϕi1···ipj̄1···j̄q(z)dz

i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (3.24)

ψ =
1

p!q!
ψi1···ipj̄1···j̄q(z)dz

i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (3.25)

define

(ϕ,ψ)(z) =
1

p!q!
ϕi1···ipj̄1···j̄q(z)ψ̄

i1···ipj̄1···j̄q(z) , (3.26)

where ψ̄i1···j̄1···(z) = gi1k̄1 · · · gipk̄pgl1j̄1 · · · glq j̄qψk1···kp l̄1···l̄q(z). Then the i.p. is:

(ϕ,ψ) =

∫
M

(ϕ,ψ)(z)
ωn

n!
. (3.27)

• Hodge-∗: Ap,q → An−q,n−p is defined so that

(ϕ,ψ)(z)
ωn

n!
= ϕ(z) ∧ ∗ψ̄(z) , (3.28)

where ψ̄ = 1
p!q!ψi1···ipj̄1···j̄qdz

i1 ∧ · · · ∧ dz̄jq = 1
p!q! ψ̄j1···jq ī1···̄ipdz

j1 ∧ · · · ∧ dzjq ∧ dz̄i1 ∧ · · · ∧ dz̄ip

- Exercise: ∗ψ̄ = ∗ψ

- Exercise: ∗ ∗ ψ = (−1)p+qψ, where ψ is of type (p, q).

- Exercise: On a 3-fold, Ω ∈ A3,0, α ∈ A2,1,

∗Ω = −iΩ , ∗ α = iα . (3.29)

• ∂̄∗ defined via the i.p. (∂̄∗, ϕ) = (ψ, ∂̄ϕ), ψ ∈ Ap,q and ϕ ∈ Ap,q−1.

- Exercise: ∂̄∗ = − ∗ ∂∗

• ∂̄-Laplacian: ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄: Ap, q → Ap,q

- Hp,q := {ψ ∈ Ap,q | ∆∂̄ψ = 0}

- (Exercise:) On a compact complex manifold, ψ is harmonic if and only if ∂̄ψ = ∂̄∗ψ = 0.
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• Hodge Theorem: Ap,q has a unique orthogonal decomposition

Ap,q = Hp,q ⊕ ∂̄Ap,q−1 ⊕ ∂̄∗Ap,q+1 ⇒ Zp,q
∂̄

= Hp,q ⊕ ∂̄Ap,q−1 ⇒ Hp,q

∂̄
' Hp,q , (3.30)

i.e., every ∂̄-cohomology class has a unique harmonic rep and vice versa.

• Similarly, ∂-Laplacian: ∆∂ = ∂∂∗ + ∂∗∂ and the Laplacian ∆ = dd∗ + d∗d. Then, very impor-
tantly, (Exercise)

∆∂̄ = ∆∂ =
1

2
∆d , (3.31)

from which lots of interesting consequences follow:

- The three harmonicities agree.

- ∆d does not change the index type.

- On a Kähler manifold, every holo p-form is harmonic (if α ∈ Ωp ⊂ Ap,0, ∂̄α = 0 and ∂̄∗α = 0),
and every harmonic (p, 0) form is holo (∆α = 0 implies ∂̄α = 0, which, for α ∈ Hp,0 means
α ∈ Ωp).

-
∑

p+q=r
hp,q = br (U(n) invariant decomposition, µ = (i, ī)).

• Constraints on the Hodge numbers (draw Hodge diagram!)

- hp,q = hq,p (complex conjugate)

- hp,q = hn−q,n−p ([∆d, ∗] = 0) = hn−p,n−q.

- hp,p > 0 (ωp is closed but not exact).

- h0,0 = 1 for a connected manifold.

- Summary: all these only leave five independent Hodge numbers (h1,0, h2,0, h1,1, h2,1, h3,0)

• 1st Chern class

- It has been shown Ricci-form leads to a metric-indep cohomology class and we define

c1(M) = −
[

1

2π
R
]
∈ H1,1(M,C) ∩H2i(M,R) , (3.32)

4 Calabi-Yau geometry

4.1 Calabi-Yau manifolds

• Def. A CY manifold is a compact Kähler manifold with vanishing first Chern class.

- Ricci-flat Kähler manifold has vanishing first Chern class, but the converse is not trivial.

- Calabi’s conjecture: Every rep of c1(M) is the Ricci-form of a Kähler metric (proved that if
there is one, it must be unique).

- Yau’s proof: such a metric always exists (his statement: let M be a compact Kähler manifold,
ω its Kähler form, c1(M) its first Chern class. Any closed real two-form of type (1, 1) belonging
to 2πc1(M) is the Ricci form of one and only one Kähler metric in the class of ω).

10



- For vanishing c1, a Kähler manifold with c1 = 0 admits a unique Ricci-flat Kähler form in each
Kähler class.

- c1 = 0 is necessary to have a Ricci-flat metric. The other way is the hard bit (Yau’s proof is for
existence and does not give the metric (no CY metric has been constructed)).

• Sum: Compact Kähler manifolds with a vanishing c1 are precisely those admitting a Kähler
metric with zero Ricci tensor (equivalently, with restricted holonomy group contained in SU(n)).

- We shall assume that CY manifolds have precisely SU(n) as their holonomy group.

- Reduced holonomy group leads to more susy in 4d and hence is bad.

• Alternative definition: Calabi-Yau manifolds are compact Kähler manifolds with trivial canon-
ical bundle.

- Canonical l.b.: K = ∧nT 1,0(M)∗, whose sections are forms of type (n, 0).

- Exercise:
[
∇i,∇j̄

]
ωi1···in = −Rij̄ωi1···in , which means that c1(K) = −c1(M) and hence,

c1(M) = 0⇔ c1(K) = 0 . (4.33)

- Thus, K ' OM and there must exist a (unique) globally defined nowhere vanishing holo n-form
Ω on M

- Ω is covariantly constant (!!!), meaning in particular that the holonomy is in SU(n).

- Ω can locally be written as Ωi1···in = f(z)εi1···in : It is holo since ∂̄īΩj1···jn = ∇īΩj1···jn = 0.

- Ω can explicitly be constructed using the covariantly constant spinor: Ωijk = εTγijkε.

- Exercise: show that such an Ω satisfies all the properties above...

- Ω is unique (if Ω′ has the same property, as it’s a top form, must have Ω′ = fΩ. Since ∂̄Ω′ = 0,
f must be holo and hence, is constant.

- Existence of Ω implies c1 = 0; as R = i∂∂̄log(det(gkl̄)) = i∂∂̄log(Ωi1···inΩ̄j̄1···j̄ng
i1j̄1 · · · gin ̄n),

implying c1 = 0.

4.2 Cohomology of Calabi-Yau manifolds

Hodge diagram (draw!)

4.3 Moduli space of Calabi-Yau geometries (three-folds)

• Given a CY background, the parameters deforming it naturally correspond to massless fields
in 4d, as they corresponds to parameters that take one vacuum state into a nearby equivalent
one.

• Local structure of CY geometries:

- Q: Space of Ricci-flat metrics for M? gµν and gµν + δgµν both satisfy Rµν = 0. What are the
possible fluctuations?

- A: (Some metric deformations only describe coordinate changes and can be eliminated by fixing
the gauge by ∇νδgµν = 0) Then possible fluctuations should satisfy (Lichnerowics) (Exercise)

∇ρ∇ρδgµν + 2R ρ σ
µ ν δgρσ = 0 . (4.34)
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- (Kählerity) Its solutions split to mixed type, δgij̄ , and pure type, δgij and δgīj̄ , and hence, we
can analyse them separately.

1. For a mixed type: we can associate the real (1,1) form δgij̄dz
i ∧ dz̄j̄ and is harmonic iff the

variation δgij̄ satisfies Lichnerowicz

* iterpretation: ⇒ h1,1 real parameters. Correspond to a cohom non-trivial Kähler form change,
δω. Yau says that for each class [ω + δω] there is a unique Ricci flat Kähler metric. Thus, it
should count Ricci-flat metrics.

* For NS two-form B2, there are internal (1, 1)-form zero modes Bij̄ which are additional (mass-
less) scalars in 4d. These combine with the Kähler form ω to have it complexified.

2. Similarly, for a pure type, one may associate the complex (2, 1)-form,

Ω l̄
jk δgl̄m̄dz

j ∧ dzk ∧ dz̄ l̄ , (4.35)

which is harmonic iff Lichnerwowics holds.

* Interpretation: ⇒ h2,1 complex parameters tα. They generate pure index components for the
metric. Thus, should correspond to complex structure deformations.

* Derivatives of Ω = 1
3!Ωijkdz

i ∧ dzj ∧ dzk are

∂αΩ =
1

3!

∂Ωijk

∂tα
dzi ∧ dzj ∧ dzk +

1

2
Ωijkdz

i ∧ dzj ∧ ∂(dzk)

∂tα
, (4.36)

defines an element in H3,0⊕H2,1 (d commutes with ∂α). Claim: the second term is (4.35), i.e.,

χα =
1

2
(χα)ijk̄dz

i ∧ dzj ∧ dz̄k̄ , with (χα)ijk̄ = −1

2
Ω l̄
ij

∂gk̄l̄
∂tα

. (4.37)

Thus, Ω encodes the complex structure dependence.

• The moduli space metric

- Most general metric that can be written in terms of the background quantities:

ds2 =
1

V

∫
M
gµνgρσ(δgµρδgνσ + δBµρδBνσ)

√
gd6x (4.38)

=
1

2V

∫
M
gij̄gkl̄

[
δgikδgj̄ l̄ + (δgil̄δgkj̄ + δBil̄δBkj̄)

]√
gd6x . (4.39)

- Simple yet important observation: block-diagonal, separating the variation of complex structure
and that of Kähler class!

• The (2,1) forms

- Have the inverse relation to (4.35):

δgīj̄ = − 1

||Ω||2
Ω̄ kl
ī (χα)klj̄δt

α ,with ||Ω||2 =
1

3!
ΩijkΩ̄

ijk constant??? . (4.40)

- the metric, 2Gαβ̄dtα ⊗ dt̄β̄ := the complex str part leads to

2Gαβ̄ = −
∫
M χα ∧ χ̄β̄∫
M Ω ∧ Ω̄

(4.41)
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- Since ∂Ω
∂tα = kαΩ + χα, we have

Gαβ̄ = − ∂

∂tα
∂

∂t̄β̄
logi

∫
M

Ω ∧ Ω̄ , (4.42)

and hence,

K2,1 = −log

(
i

∫
M

Ω ∧ Ω̄

)
. (4.43)

• The (1,1) forms

- The i.p. on H1,1 corresponding to the (4.39) is

G(ρ, σ) =
1

2V

∫
M
ρij̄σkl̄g

il̄gkj̄
√
gd6x =

1

2V

∫
M
ρ ∧ ∗σ , (4.44)

for real (1,1) forms.

- With a real basis of harmonic (1,1) forms, ea, the metric on moduli space can be written as

Gab̄ =
1

2
G(ea, eb) =

∂

∂wa
∂

∂w̄b̄
K1,1 , (4.45)

where e−K
1,1

= 4
3

∫
M ω3.

5 Type II compactifications on a Calabi-Yau manifold

• Having explored the geometric meaning of h1,1 and h1,1, could study their relevance to dofs in
eff. theory in type II supergravities. Here we summarise the result of those analysis.

• CY3 compactification - 10d origin of the 4d massless fields

1. IIA sugra (non-chiral)

- 10d Field contents, {GMN , BMN , φ, CM , CMNP (, ψ
(±)
M , χ±)}

- 4d N = 2. gravity, hyper, vector (irreps with spin ≤ 2).

- (1) Gµν=0,1,2,3, ψ
+
µ , ψ

−
µ , Cµ ⇒ gavtity mult.

- Thanks to supersymmetry, may just work out bosonic states:

- (2) Cµij̄ ⇒ Aaµ (h1,1)

- (3) Gij̄ and Bij̄ ⇒ wa (h1,1).

- (4) Gij ⇒ tα (h2,1).

- (5) Cijk̄ ⇒ Cα (h2,1)

- (6) φ and Bµν ⇒ S (1)

- (7) Cijk ⇒ C (1)

- grouping: !!! (in the end, 1 gravity mult, h1,1 vec mult. and h2,1 + 1 hypermult(incl. universal
one from S and C) (or, 2h1,1 + 4h2,1 + 4 scalar fields, h1,1 + 1 vector fields)

2. IIB sugra
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- 10d Field contents, {GMN , BMN , φ, C,CMN , C̃MNPQ(, ψ
(+)
M , ψ̃

(+)
M , χ(−), χ̃(−))}

- grouping: !!! (in the end, 1 gravity, h2,1 vec mult. and h1,1 + 1 hypermult(incl. universal one
from S and C) (or, 2h2,1 + 4h1,1 + 4 scalar fields, h2,1 + 1 vector fields)

• Note that IIA and IIB result in the same spectrum upon exchanging the Hodge numbers,
indicating “mirror” symmetry.

5.1 Flux: omitted!

6 Constructing a Calabi-Yau manifold: algebro-geometrical tech-
niques

• Quintic

- Why CY? (see, G.Tian, “Canonical Metrics in Kähler Geometry,” Birkhäuser, 200.: given the
Fubini-study metric induced to CY, computing the volume form, and read off the first Chern
explicitly, resulting in,

c1(M) ∼ (n+ 1− d) [ω] . (6.46)

- h1,1 = 1 (ambient induced, h1,1 = 1).

- h2,1 = 101 (appearing as the coefficient counting: 126-24-1)(or, via computing χ = −200 first).

- Chern class, Intersection numbers, Kähler cones, etc.

6.1 CICY

• E.g. [
P1 1 1
P4 1 4

]
, (6.47)

- What does it mean?

- Why CY?

- Why smooth? Bertini’s theorem (c.f. base point freeness...)

- h1,1 = 2 (induced from the ambient? need to be careful - Lefschetz hyperplane)

- h2,1 = 86(or, χ = −168)

• This way, CICYs have been “classified”, leading to about 8000 compact CYs

6.2 gCICY

• E.g. [
P1 3 −1
P4 2 3

]
, (6.48)

- What does it mean?

- Why CY?
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- Why smooth? No reason here!

- h1,1 = 2 (induced from the ambient? need to be careful, no Lefschetz, need to do bundle-valued
cohomology, h1(TX∗) = h2(TX))

- h2,1 = 46(again, no counting, need to do bundle-valued cohomology, h1(TX), or, χ = −88)
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