one-loop quantum physics of matter in curved spacetime

PILJIN YI

or, how quantum matter "renormalizes" classical geometry

PILJIN YI

one-loop renormalization as selective Gaussian integration

functional Gaussian integral via heat kernel

2d Weyl anomaly & s-wave Hawking radiation

Bogolyubov, Hawking, Unruh, and de Sitter

references

- Wilson & Kogut, "The renormalization group and the *∈* -expansion," Physics Reports 12 (1974) 75-200.
- McKean & Singer, "Curvature and the eigenvalues of the Laplacian," Journal of Differential Geometry, vol.1 (1967) 43-69.
- Barvinsky's summary of an improved heat kernel expansion http://www.scholarpedia.org/article/Heat kernel expansion in the background field formalism
- Misner, Thorne & Wheeler, "Gravitation," W.H. Freedman and Company.
- Birrel & Davies, "Quantum Fields in Curved Space," Cambridge University Press.
- Preskill's Lecture Note: Physics 236c, "Quantum Field Theory in Curved Spacetime" http://www.theory.caltech.edu/~preskill/notes.html

one-loop renormalization as selective Gaussian integration

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2}$$

$\epsilon = 1 \Rightarrow$	4.96145
$\epsilon = 0.1 \Rightarrow$	6.02068
$\epsilon = 0.01 \Rightarrow$	6.25245
$\epsilon = 0.001 \Rightarrow$	6.28005

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2} = \int dx \ e^{-\frac{1}{2}x^2} \int dy \ e^{-\frac{1}{2}y^2 (1 + \epsilon x^2)}$$

recall the Gaussian integration

$$\int_{-\infty}^{\infty} dy \ e^{-\frac{m}{2}y^2} = \sqrt{\frac{2}{m}} \int_{-\infty}^{\infty} d\tilde{y} \ e^{-\tilde{y}^2}$$
$$= \sqrt{\frac{2}{m}} \int_{0}^{\infty} d\tilde{y}^2 \ \tilde{y}^{-1} e^{-\tilde{y}^2}$$
$$= \sqrt{\frac{2}{m}} \int_{0}^{\infty} ds \ s^{-1/2} e^{-s}$$
$$= \sqrt{\frac{2}{m}} \times \Gamma\left(\frac{1}{2}\right) = \sqrt{\frac{2\pi}{m}}$$

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2} = \int dx \ e^{-\frac{1}{2}x^2} \int dy \ e^{-\frac{1}{2}y^2(1 + \epsilon x^2)}$$
$$= \int dx \ e^{-\frac{1}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{1 + \epsilon x^2}}$$

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2} = \int dx \ e^{-\frac{1}{2}x^2} \int dy \ e^{-\frac{1}{2}y^2(1+\epsilon x^2)}$$
$$= \int dx \ e^{-\frac{1}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{1+\epsilon x^2}}$$
$$= \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}x^2 - \frac{1}{2}\log((1+\epsilon x^2))}$$
$$= \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}(1+\epsilon)x^2 - O(\epsilon^2 x^4)}$$

textbook renormalization = selective integration + truncation

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2} = \int dx \ e^{-\frac{1}{2}x^2} \int dy \ e^{-\frac{1}{2}y^2(1+\epsilon x^2)}$$
$$= \int dx \ e^{-\frac{1}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{1+\epsilon x^2}}$$
$$1 : \text{ bare} \qquad = \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}x^2 - \frac{1}{2}\log((1+\epsilon x^2))}$$
$$1 + \epsilon : \text{ renormalized} \qquad = \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}(1+\epsilon)x^2 - O(\epsilon^2 x^4)}$$

$$\simeq \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}(1+\epsilon)x^2}$$

textbook renormalization = selective integration + truncation

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{1}{2}x^2 - \frac{1}{2}y^2 - \frac{1}{2}\epsilon x^2 y^2} \qquad \simeq \sqrt{2\pi} \int dx \ e^{-\frac{1}{2}(1+\epsilon)x^2}$$

$\epsilon = 1$	\Rightarrow	4.96145	4.44288
$\epsilon = 0.1$	\Rightarrow	6.02068	5.99078
$\epsilon = 0.01$	\Rightarrow	6.25245	6.25200
$\epsilon = 0.001$	\Rightarrow	6.28005	6.28005

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{M}{2}x^2 - \frac{m}{2}y^2 - \frac{\epsilon}{2}x^2y^2} = \int dx \ e^{-\frac{M}{2}x^2} \int dy \ e^{-\frac{m+\epsilon x^2}{2}y^2}$$
$$= \int dx \ e^{-\frac{M}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{m+\epsilon x^2}}$$
$$= \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{M}{2}x^2 - \frac{1}{2}\log((1+\epsilon/m)x^2))}$$
$$= \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{1}{2}(M+\epsilon/m)x^2 - O((\epsilon^2/m^2)x^4)}$$

renormalization = selective integration

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{M}{2}x^2 - \frac{m}{2}y^2 - \frac{\epsilon}{2}x^2y^2} = \int dx \ e^{-\frac{M}{2}x^2} \int dy \ e^{-\frac{m+\epsilon x^2}{2}y^2}$$
$$= \int dx \ e^{-\frac{M}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{m+\epsilon x^2}}$$
$$M : \text{bare} \qquad = \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{M}{2}x^2 - \frac{1}{2}\log((1+\epsilon/m)x^2))}$$
$$M + \epsilon/m : \text{renormalized} \qquad = \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{1}{2}(M+\epsilon/m)x^2 - O((\epsilon^2/m^2)x^4)}$$

textbook renormalization = selective integration + truncation

$$\begin{split} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx dy \ e^{-\frac{M}{2}x^2 - \frac{m}{2}y^2 - \frac{\epsilon}{2}x^2y^2} &= \int dx \ e^{-\frac{M}{2}x^2} \int dy \ e^{-\frac{m+\epsilon x^2}{2}y^2} \\ &= \int dx \ e^{-\frac{M}{2}x^2} \times \frac{\sqrt{2\pi}}{\sqrt{m+\epsilon x^2}} \\ M : \text{ bare} &= \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{M}{2}x^2 - \frac{1}{2}\log((1+\epsilon/m)x^2))} \\ M + \epsilon/m : \text{ renormalized} &= \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{1}{2}(M+\epsilon/m)x^2 - O((\epsilon^2/m^2)x^4)} \\ &\simeq \sqrt{\frac{2\pi}{m}} \int dx \ e^{-\frac{1}{2}(M+\epsilon/m)x^2} \end{split}$$

q.f.t. renormalization = selective path-integral

$$\int [d\phi] e^{-\int \mathcal{L}_{renormalized}(\phi)} \equiv \int [d\phi] \int [d\psi] e^{-\int \mathcal{L}_{bare}(\phi;\psi)}$$

example : momentum shell integration

$$\int_{p^2 < \mu^2} [d\phi] e^{-\int \mathcal{L}_{\mu}(\phi_{\mu})} \equiv \int_{p^2 < \Lambda^2} [d\phi] e^{-\int \mathcal{L}_{\Lambda}(\phi_{\Lambda})}$$
$$= \int_{p^2 < \mu^2} \int_{\mu^2 < p^2 < \Lambda^2} [d\phi] e^{-\int \mathcal{L}_{\Lambda}(\phi_{\Lambda})}$$

example : U(I) gauge theory with massive charged field

$$\begin{split} \int \mathcal{L} &= \int dx^4 \left[\frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} + \tilde{D}_{\mu} \Phi^* \tilde{D}^{\mu} \Phi + m^2 |\Phi|^2 \right] \\ &\tilde{F}_{\mu\nu} &= \partial_{\mu} \tilde{A}_{\nu} - \partial_{\nu} \tilde{A}_{\mu} \\ &\tilde{D}_{\mu} &= \partial_{\mu} - ig \tilde{A}_{\mu} \\ &D_{\mu} &= \partial_{\mu} - iA_{\mu} \\ &\int \mathcal{L} &= \int dx^4 \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2 \right] \end{split}$$

$$\int \mathcal{L} = \int dx^4 \, \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_\mu \Phi^* D^\mu \Phi + m^2 |\Phi|^2 \right]$$

$$\begin{array}{rccc} A_{\mu} & \to & A_{\mu} + i \partial_{\mu} \Theta \\ \\ \Phi & \to & e^{i \Theta} \Phi \end{array}$$

$$F_{\mu\nu} \rightarrow F_{\mu\nu}$$

 $(\partial_{\mu} - iA_{\mu})\Phi \rightarrow e^{i\Theta}(\partial_{\mu} - iA_{\mu})\Phi$

$$\int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$\simeq \int [dA] e^{-\int \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu}} \times \frac{1}{\operatorname{Det}_{\Lambda}(-(\partial - iA)^2 + m^2)}$$

$$\int \Delta \mathcal{L}(m,\Lambda) = \log \operatorname{Det}_{\Lambda}(-(\partial - iA)^2 + m^2)$$
$$= \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^2 + m^2)$$

$$= \int [dA] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \Delta \mathcal{L}(F;m,\Lambda)\right]}$$

functional determinant and functional trace

$$Q \equiv -(\partial - iA)^2 + m^2 \qquad \qquad Q |\psi_n\rangle = \lambda_n |\psi_n\rangle$$

$$\mathrm{Det}Q \equiv \prod_n \lambda_n$$

$$\log \operatorname{Det} Q = \log \left(\prod_{n} \lambda_{n}\right) = \sum_{n} \log(\lambda_{n}) = \operatorname{Tr} \log(Q)$$

log of determinant = trace of log

 $\log \operatorname{Det} Q = \operatorname{Tr} \log Q$

$$-\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} e^{-a \cdot s} = -\int_{a/\Lambda^2}^{\infty} \frac{d(a \cdot s)}{a \cdot s} e^{-a \cdot s}$$

$$= -\int_{a/\Lambda^2}^{\infty} \frac{dy}{y} \ e^{-y}$$

$$= -\log(y)e^{-y}\Big|_{a/\Lambda^2}^{\infty} + \int_{a/\Lambda^2}^{\infty} dy \,\log(y) \,e^{-y}$$

$$= + \log(a/\Lambda^2) + O(a/\Lambda^2)$$

log of functional determinant of operator = functional trace of log of operator

 $\log \det Q = \operatorname{tr} \log Q$

$$= -\mathrm{Tr} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \exp\left[-sQ\right]$$

$$= -\sum_{n} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \left\langle \psi_n | \exp\left[-sQ\right] | \psi_n \right\rangle$$

$$= -\int dx^d \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \langle x | \exp\left[-sQ\right] | x \rangle$$

$$\Delta \mathcal{L}(F;m,\Lambda) = \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^{2} + m^{2})$$

$$= -\operatorname{Tr} \int_{1/\Lambda^{2}}^{\infty} \frac{ds}{s} \exp\left[-s(-(\partial - iA)^{2} + m^{2})\right]$$

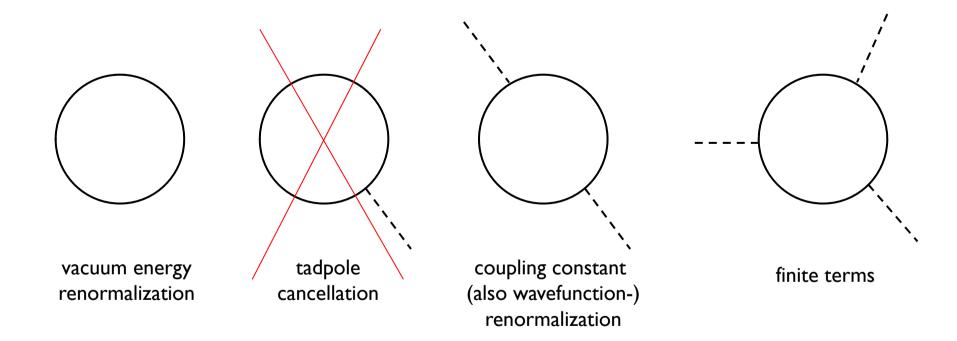
$$= -\int_{1/\Lambda^{2}}^{\infty} \frac{ds}{s} \int dx^{4} \langle x| \exp\left[-s(-(\partial - iA)^{2} + m^{2})\right] |x\rangle$$

$$= -\int_{1/\Lambda^{2}}^{\infty} \frac{ds}{s} \int dx^{4} \langle x| \exp\left[-s(-(\partial - iA)^{2} + m^{2})\right] |x\rangle$$

$$= -\frac{1}{16\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s^3} e^{-m^2s} \int dx^4$$

$$+ \frac{1}{192\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \ e^{-m^2 s} \times \int dx^4 F_{\mu\nu} F^{\mu\nu} + \cdots$$

$$\int \Delta \mathcal{L}(F; m, \Lambda) = \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^2 + m^2)$$
$$= \Lambda^4 a(m/\Lambda) + b(m/\Lambda) \frac{1}{4} F^2 + \frac{c(m/\Lambda)}{\Lambda^2} F^3 + \cdots$$



$$\Lambda^{4-n} I_n(m/\Lambda) \equiv \int_{1/\Lambda^2}^{\infty} ds \ s^{n/2-3} \ e^{-m^2 s} = \Lambda^{4-n} \int_1^{\infty} d\tilde{s} \ \tilde{s}^{n/2-3} \ e^{-(m^2/\Lambda^2)\tilde{s}}$$

$$I_0(m/\Lambda) = 2\left(1 - m^2/\Lambda^2 + m^4/\Lambda^4 I_4(m/\Lambda)\right)$$

$$I_4(m/\Lambda) \simeq \begin{bmatrix} -\gamma - \log(m^2/\Lambda^2) + O(m^2/\Lambda^2) & \text{when } m^2 \ll \Lambda^2 \\ e^{-m^2/\Lambda^2} & \text{when } m^2 \gg \Lambda^2 \end{bmatrix}$$

$$\int [dA] e^{-W_{eff}(A)} \equiv \int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$W_{eff} = \int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \Delta \mathcal{L}(F; m, \Lambda) \right]$$
$$= \int \left[\dots + \left(\frac{1}{4g^2} + \frac{1}{192\pi^2} I_4(m/\Lambda) \right) F_{\mu\nu} F^{\mu\nu} + \dots \right]$$
$$= \frac{1}{4g^2(0; m, \Lambda)_{ren}}$$

$$\begin{aligned} \frac{1}{4g^2(0;m,\Lambda)_{ren}} &= \frac{1}{4g^2} + \frac{1}{192\pi^2} I_4(m_{scalar}/\Lambda) \\ &+ \frac{4}{192\pi^2} I_4(m_{spinor}/\Lambda) \end{aligned}$$

more generally we may wish to integrate out partially, say, $\,\mu^2 < p^2 < \Lambda^2$

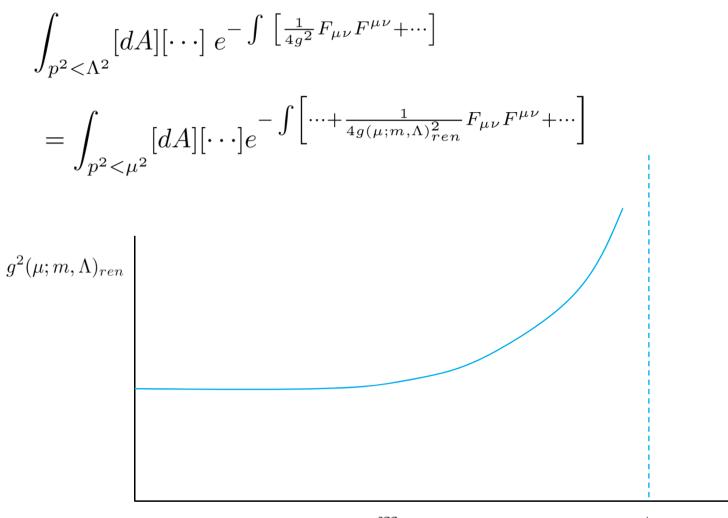
$$\int_{p^{2} < \mu^{2}} [dA][d\Phi][d\Phi^{*}][\cdots]e^{-\int \frac{1}{4g_{ren}^{2}(\mu;m,\Lambda)}F^{2}+\cdots}$$
$$\equiv \int_{p^{2} < \Lambda^{2}} [dA][d\Phi][d\Phi^{*}][\cdots]e^{-\int \left[\frac{1}{4g^{2}}F_{\mu\nu}F^{\mu\nu}+D_{\mu}\Phi^{*}D^{\mu}\Phi+m^{2}|\Phi|^{2}+\cdots\right]}$$

more generally we may wish to integrate out partially, say, $\,\mu^2 < p^2 < \Lambda^2$

$$\frac{1}{4g^2(\mu;m,\Lambda)_{ren}} = \frac{1}{4g^2} + \frac{1}{192\pi^2} \tilde{I}_4(m_{scalar};\mu,\Lambda) + \frac{4}{192\pi^2} \tilde{I}_4(m_{spinor};\mu,\Lambda)$$

$$\tilde{I}_4(m;\mu,\Lambda) \equiv \int_{1/\Lambda^2}^{1/\mu^2} \frac{ds}{s} \ e^{-m^2s}$$

 $\sim -\log(m^2/\Lambda^2)$ when $\mu^2 < m^2 < \Lambda^2$ $\sim -\log(\mu^2/\Lambda^2)$ when $m^2 < \mu^2 < \Lambda^2$



 $\Lambda_{\rm Landau}$

 μ

functional Gaussian integral via heat kernel

U(I) gauge theory with a massive charged scalar

$$Tr_{\Lambda} \log Q = -Tr \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \exp\left[-sQ\right]$$
$$= -\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \int dx^4 \langle x| \exp\left[-sQ\right] |x\rangle$$
$$= -\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \int dx^4 G_s(x;x)$$

$$G_s(x;y) \equiv \langle x | e^{-sQ} | y \rangle$$
$$-\frac{\partial}{\partial s} G_s(x;y) = Q G_s(x;y)$$

U(I) gauge theory with a massive charged scalar

$$\operatorname{Tr}_{\Lambda} \log Q = -\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \int dx^4 \ G_s(x;x)$$

$$G_s(x;y) \equiv \langle x|e^{-sQ}|y\rangle \qquad -\frac{\partial}{\partial s}G_s(x;y) = QG_s(x;y)$$

heat kernel expansion

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$

 $Q^{(0)} + Q^{(1)} = -\partial^2 + m^2 + Q^{(1)}$ $G_\beta = G_\beta^{(0)} + G_\beta^{(1)} + G_\beta^{(2)} + \cdots$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} + Q^{(1)} = -\partial^{2} + m^{2} + Q^{(1)}$$
$$G_{\beta} = G_{\beta}^{(0)} + G_{\beta}^{(1)} + G_{\beta}^{(2)} + \cdots$$

$$-\frac{\partial}{\partial\beta}G^{(0)}_{\beta}(x;y) = Q^{(0)}G^{(0)}_{\beta}(x;y)$$

$$G^{(0)}_{\beta}(x;y) = \langle x|e^{\beta\partial^2}|y\rangle = \frac{1}{(4\pi\beta)^{d/2}}e^{-(x-y)^2/4\beta}e^{-\beta m^2} \quad \text{for } R^d$$

$$\lim_{x \to \infty} g^{(0)}(x,y) = \langle x|e^{\beta(1-\beta)}|y\rangle = \frac{1}{(4\pi\beta)^{d/2}}e^{-(x-y)^2/4\beta}e^{-\beta m^2} \quad \text{for } R^d$$

 $\lim_{\beta \to 0} G_{\beta}^{(0)}(x;y) = \delta(x;y)$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$

$$Q^{(0)} + Q^{(1)} = -\partial^{2} + m^{2} + Q^{(1)}$$

$$G_{\beta} = G_{\beta}^{(0)} + G_{\beta}^{(1)} + G_{\beta}^{(2)} + \cdots$$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)} = Q^{(0)}G_{\beta}^{(n+1)} + Q^{(1)}G_{\beta}^{(n)}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y)$$

 $Q^{(0)} + Q^{(1)} = -\partial^2 + m^2 + Q^{(1)}$ $G_\beta = G_\beta^{(0)} + G_\beta^{(1)} + G_\beta^{(2)} + \cdots$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y)$$

$$G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)$$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y)$$

$$G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)$$

$$\frac{\partial}{\partial\beta}G^{(n+1)}_{\beta}(x;y) = -\int_0^\beta ds \int_z \frac{\partial}{\partial\beta}G^{(0)}_{\beta-s}(x;z)Q^{(1)}(z)G^{(n)}_s(z;y)$$
$$-\lim_{s\to\beta}\int_z G^{(0)}_{\beta-s}(x;z)Q^{(1)}(z)G^{(n)}_s(z;y)$$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y)$$

$$G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)$$

$$\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} \frac{\partial}{\partial\beta}G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)$$
$$-Q^{(1)}(x)G_{\beta}^{(n)}(x;y)$$

 $\lim_{\beta \to 0} G_{\beta}^{(0)}(x;y) = \delta(x;y)$

$$-\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) = Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y)$$

$$G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)$$

$$\begin{aligned} \frac{\partial}{\partial\beta} G_{\beta}^{(n+1)}(x;y) &= -Q^{(0)} \left[-\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z) Q^{(1)}(z) G_{s}^{(n)}(z;y) \right] \\ &- Q^{(1)}(x) G_{\beta}^{(n)}(x;y) \end{aligned}$$

$$\begin{aligned} -\frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) &= Q^{(0)}G_{\beta}^{(n+1)}(x;y) + Q^{(1)}G_{\beta}^{(n)}(x;y) \\ G_{\beta}^{(n+1)}(x;y) &= -\int_{0}^{\beta}ds\int_{z}G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y) \\ \frac{\partial}{\partial\beta}G_{\beta}^{(n+1)}(x;y) &= -Q^{(0)}\left[-\int_{0}^{\beta}ds\int_{z}G_{\beta-s}^{(0)}(x;z)Q^{(1)}(z)G_{s}^{(n)}(z;y)\right] \\ -Q^{(1)}(x)G_{\beta}^{(n)}(x;y) \end{aligned}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$

$$G_{\beta}^{(n+1)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z) Q^{(1)}(z) G_{s}^{(n)}(z;y)$$
$$= (-1)^{n} \int_{0}^{\beta} ds_{1} \int_{0}^{s_{1}} ds_{2} \dots \int_{0}^{s_{n-1}} ds_{n} \int_{z_{1}} \dots \int_{z_{n}}$$
$$G_{\beta-s_{1}}^{(0)}(x;z_{1}) Q^{(1)} G_{s_{1}-s_{2}}(z_{1};z_{2}) \dots Q^{(1)} G_{s_{n}}^{(0)}(z_{n};y)$$

heat kernel expansion: β power counting

I. each
$$G^{(0)} \rightarrow \beta^{-d/2}$$

- 2. each x-integral $\rightarrow \beta^{d/2}$
- 3. each s-integral $\rightarrow \beta$
- 4. each derivative $\rightarrow \beta^{-1/2}$
- 5. each x $\rightarrow \beta^{1/2}$

 $[x]^a[\partial]^b$ in $Q^{(1)} \rightarrow \beta^{1+(a-b)/2}$ at each iteration

heat kernel expansion for U(I) R.G.

$$Q \equiv -(\partial - iA)^2 + m^2$$

$$= -\partial^{2} + m^{2} + 2iA \cdot \partial + i(\partial \cdot A) + A^{2}$$

$$\simeq -\partial^{2} + m^{2} + iF_{\mu\nu}x^{\mu}\partial^{\nu} + \frac{1}{4}F_{\sigma\mu}F^{\sigma\nu}x^{\mu}x_{\nu}$$

$$Q^{(0)} \qquad Q^{(1)}$$

 $A_{\mu} \rightarrow \frac{1}{2} F_{\alpha\mu} x^{\alpha}$ if derivative of field strength can be ignored or is irrelevant

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(0)}(x;y) = \frac{1}{(4\pi\beta)^{d/2}} e^{-(x-y)^2/4\beta} e^{-\beta m^2}$$
$$G_{\beta}^{(1)}(x;y) = -\int_0^\beta ds \int_z G_{\beta-s}^{(0)}(x;z) Q^{(1)} G_s^{(1)}(z;y)$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(1)}(x;y) = -\int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}z \ e^{-(x-z)^{2}/4(\beta-s)} Q^{(1)} e^{-(z-y)^{2}/4s} \right\}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(1)}(x;y) = -\int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}z \; e^{-(x-z)^{2}/4(\beta-s)} Q^{(1)} e^{-(z-y)^{2}/4s} \right\}$$

we must now decide what is the most useful decomposition of Q

 \rightarrow we will eventually take $G_s(x;x)$ for determinant, so Q should be expanded around this position

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(1)}(x;x) = -\int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}z \; e^{-(x-z)^{2}/4(\beta-s)} Q^{(1)} \Big|_{z} e^{-(z-x)^{2}/4s} \right\}$$

$$= \int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta - s)s)^{d/2}} \int d^{d}z \left[\frac{1}{2s} b_{\mu\nu}(z) - c_{\mu\nu}(z) \right] (z - x)^{\mu} (z - x)^{\nu} e^{-\beta (z - x)^{2}/4s(\beta - s)} \right\}$$

$$= \int_0^\beta ds \, \left\{ \frac{e^{-\beta m^2}}{(4\pi)^d ((\beta - s)s)^{d/2}} \int d^d \tilde{z} \, \left[\frac{1}{2s} b_{\mu\nu}(z) - c_{\mu\nu}(z) \right] \Big|_{z=\tilde{z}+x} \tilde{z}^{\mu} \tilde{z}^{\nu} e^{-\beta \tilde{z}^2/4s(\beta - s)} \right\}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$\begin{aligned} G_{\beta}^{(1)}(x;x) &= -\int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}z \; e^{-(x-z)^{2}/4(\beta-s)} Q^{(1)} \Big|_{z} e^{-(z-x)^{2}/4s} \right\} \\ &= \int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}\tilde{z} \; \left[\frac{1}{2s} b_{\mu\nu}(z) - c_{\mu\nu}(z) \right] \Big|_{z=\tilde{z}+x} \tilde{z}^{\mu} \tilde{z}^{\nu} e^{-\beta \tilde{z}^{2}/4s(\beta-s)} \right\} \end{aligned}$$

$$= \int_0^\beta ds \,\left\{ \frac{e^{-\beta m^2}}{(4\pi)^d ((\beta-s)s)^{d/2}} \int d^d \tilde{z} \left[\frac{1}{2s} b_{\mu\nu} - c_{\mu\nu} \right] \Big|_x \delta_{\mu\nu} \frac{\tilde{z}^2}{d} e^{-\tilde{z}^2 \beta/4s(\beta-s)} \right\} + O(\beta^2 \partial \partial b, \beta^3 \partial \partial c)$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$\begin{split} G_{\beta}^{(1)}(x;x) &\simeq \int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \int d^{d}\tilde{z} \left[\frac{1}{2s} b_{\mu\nu} - c_{\mu\nu} \right] \Big|_{x} \delta_{\mu\nu} \frac{\tilde{z}^{2}}{d} e^{-\tilde{z}^{2}\beta/4s(\beta-s)} \right\} \\ &\simeq \int_{0}^{\beta} ds \left\{ \frac{e^{-\beta m^{2}}}{(4\pi)^{d} ((\beta-s)s)^{d/2}} \left[\frac{1}{2s} b_{\mu}{}^{\mu} - c_{\mu}{}^{\mu} \right] \Big|_{x} \int d^{d}\tilde{z} \, \frac{\tilde{z}^{2}}{d} e^{-\tilde{z}^{2}\beta/4s(\beta-s)} \right\} \\ &\simeq \int_{0}^{\beta} ds \, \left\{ \frac{4^{d/2+1} ((\beta-s)s) e^{-\beta m^{2}}}{(4\pi)^{d} \beta^{d/2+1}} \left[\frac{1}{2s} b_{\mu}{}^{\mu} - c_{\mu}{}^{\mu} \right] \Big|_{x} \int d^{d}\tilde{z} \, \frac{\tilde{z}^{2}}{d} e^{-\tilde{z}^{2}} \right\} \end{split}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$\begin{split} G_{\beta}^{(1)}(x;x) &\simeq \int_{0}^{\beta} ds \, \left\{ \frac{4^{d/2+1}((\beta-s)s)e^{-\beta m^{2}}}{(4\pi)^{d}\beta^{d/2+1}} \left[\frac{1}{2s} b_{\mu}^{\ \mu} - c_{\mu}^{\ \mu} \right] \Big|_{x} \int d^{d}\tilde{z} \, \frac{\tilde{z}^{2}}{d} e^{-\tilde{z}^{2}} \right\} \\ &\simeq \int_{0}^{\beta} ds \, \left\{ \frac{4^{d/2+1}(\beta-s)se^{-\beta m^{2}}}{(4\pi)^{d}\beta^{d/2+1}} \left[\frac{1}{2s} b_{\mu}^{\ \mu} - c_{\mu}^{\ \mu} \right] \Big|_{x} \frac{\pi^{d/2}}{2} \right\} \\ &\simeq \frac{e^{-\beta m^{2}}}{(4\pi\beta)^{d/2}} \left[\int_{0}^{\beta} ds \, \left[\frac{\beta-s}{\beta} b_{\mu}^{\ \mu} - \frac{2s(\beta-s)}{\beta} c_{\mu}^{\ \mu} \right] \Big|_{x} \right] \end{split}$$

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(1)}(x;x) = \frac{e^{-\beta m^2}}{(4\pi\beta)^{d/2}} \left[\frac{\beta}{2} b_{\mu}{}^{\mu}(x) - \frac{\beta^2}{3} c_{\mu}{}^{\mu}(x)\right] + O(\beta^2 \partial \partial b, \beta^3 \partial \partial c)$$

heat kernel expansion for U(I) R.G.

$$Q \equiv -(\partial - iA)^2 + m^2$$

$$= -\partial^{2} + m^{2} + 2iA \cdot \partial + i(\partial \cdot A) + A^{2}$$
$$\simeq -\partial^{2} + m^{2} + iF_{\mu\nu}x^{\mu}\partial^{\nu} + \frac{1}{4}F_{\sigma\mu}F^{\sigma\nu}x^{\mu}x_{\nu}$$
$$Q^{(0)} \qquad Q^{(1)}$$

 $A_{\mu} \rightarrow \frac{1}{2} F_{\alpha\mu} x^{\alpha}$ if derivative of field strength can be ignored or is irrelevant after one more iteration

 \rightarrow one-loop R.G. of U(1) gauge theory with massive charged scalar

$$\int \Delta \mathcal{L}(F; m, \Lambda) = \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^2 + m^2)$$
$$= -\operatorname{Tr} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \exp\left[-s(-(\partial - iA)^2 + m^2)\right]$$
$$= -\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \int dx^4 \langle x| \exp\left[-s(-(\partial - iA)^2 + m^2)\right] |x\rangle$$
$$= -\frac{1}{16\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s^3} e^{-m^2s} \int dx^4$$

$$+ \frac{1}{192\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \ e^{-m^2 s} \times \int dx^4 F_{\mu\nu} F^{\mu\nu} + \cdots$$

excursion: quantum one-loop as a functional Gaussian integral how to derive the Asymptotic Freedom, or Yang-Mills beta function Yang-Mills theory renormalization & asymptotic freedom

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2} \mathrm{tr} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} \right]$$
$$\tilde{F}_{\mu\nu} = \partial_{\mu} \tilde{A}_{\nu} - \partial_{\nu} \tilde{A}_{\mu} - ig[\tilde{A}_{\mu}, \tilde{A}_{\nu}]$$
$$A_{\mu} = g \tilde{A}_{\mu}$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \text{tr} F_{\mu\nu} F^{\mu\nu} \right]$$
$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu]$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$A = A^{\dagger} \qquad B = B^{\dagger}$$

$$(i[A,B])^{\dagger} = i^*(AB - BA)^{\dagger} = -i(B^{\dagger}A^{\dagger} - A^{\dagger}B^{\dagger}) = -i[B,A] = i[A,B]$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

a canonical example

$$A_{\mu} = \sum_{a=1,2,3} A^{a}_{\mu} \frac{\sigma^{a}}{2}$$

 $F_{\mu\nu} = \sum_{a=1,2,3} F^a_{\mu\nu} \frac{\sigma^a}{2}$

$\sigma^1 = \Big($	$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$
$\sigma^2 = \Big($	$0 \\ i$	$\begin{pmatrix} -i \\ 0 \end{pmatrix}$
$\sigma^3 = \bigg($	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{pmatrix} 0\\ -1 \end{pmatrix}$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + \epsilon_{abc} A^b_\mu A^c_\nu$$

$$\int \mathcal{L} = \int dx^4 \, \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

more generally

$$A_{\mu} = \sum_{a} A^{a}_{\mu} T^{a}$$
$$F_{\mu\nu} = \sum_{a} F^{a}_{\mu\nu} T^{a}$$

 $F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - i f_{abc} A^b_\mu A^c_\nu$

 $[T^a, T^b] = f_{abc}T^c$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$A_{\mu} = A_{\mu}^{\dagger} \qquad A_{\mu} \rightarrow U^{\dagger} A_{\mu} U + i U^{\dagger} \partial_{\mu} U$$
$$F_{\mu\nu} = F_{\mu\nu}^{\dagger} \qquad F_{\mu\nu} \rightarrow U^{\dagger} F_{\mu\nu} U$$
$$U \in \mathcal{U}(N)$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$A_{\mu} = A_{\mu}^{\dagger} \qquad A_{\mu} \rightarrow U^{\dagger} A_{\mu} U + i U^{\dagger} \partial_{\mu} U$$
$$F_{\mu\nu} = F_{\mu\nu}^{\dagger} \qquad F_{\mu\nu} \rightarrow U^{\dagger} F_{\mu\nu} U$$
$$tr F_{\mu\nu} = 0 = tr A_{\mu} \qquad U \in \mathcal{SU}(N)$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$A_{\mu} = A_{\mu}^{\dagger} \qquad A_{\mu} \rightarrow U^{\dagger} A_{\mu} U + i U^{\dagger} \partial_{\mu} U$$
$$F_{\mu\nu} = F_{\mu\nu}^{\dagger} \qquad F_{\mu\nu} \rightarrow U^{\dagger} F_{\mu\nu} U$$
$$A_{\mu}^{T} I = I A_{\mu} \qquad U \in \mathcal{O}(N)$$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

what types of matrices are preserved under the commutator ?

$$A_{\mu} = A_{\mu}^{\dagger} \qquad A_{\mu} \rightarrow U^{\dagger}A_{\mu}U + iU^{\dagger}\partial_{\mu}U$$
$$F_{\mu\nu} = F_{\mu\nu}^{\dagger} \qquad F_{\mu\nu} \rightarrow U^{\dagger}F_{\mu\nu}U$$
$$A_{\mu}^{T}I = IA_{\mu} \qquad U \in \mathcal{SO}(N)$$

 $\mathrm{tr}F_{\mu\nu} = 0 = \mathrm{tr}A_{\mu}$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

what types of matrices are preserved under the commutator ?

$$A_{\mu} = A_{\mu}^{\dagger} \qquad A_{\mu} \rightarrow U^{\dagger}A_{\mu}U + iU^{\dagger}\partial_{\mu}U$$
$$F_{\mu\nu} = F_{\mu\nu}^{\dagger} \qquad F_{\mu\nu} \rightarrow U^{\dagger}F_{\mu\nu}U$$
$$A_{\mu}^{T}J = JA_{\mu} \qquad U \in \mathcal{SP}(N/2) = USp(N)$$

 $J^T = -J, \quad J^2 = -1$

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

$$A_{\mu} = \sum_{a} A^{a}_{\mu} T^{a}$$
$$F_{\mu\nu} = \sum_{a} F^{a}_{\mu\nu} T^{a}$$

 $[T^a, T^b] = f_{abc}T^c$

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu - i f_{abc} A^b_\mu A^c_\nu$$

Yang-Mills theory with matter fields

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} + D_\mu \Phi^* D^\mu \Phi + m^2 |\Phi|^2 + \cdots \right]$$

$$D_{\mu}\Phi^{k} = \partial_{\mu}\Phi^{k} - iA^{a}_{\mu}(t^{a})^{k}_{\ l}\Phi^{l}$$
$$(t^{a})^{k}_{\ l}, \quad k, l = 1, \dots, n$$
$$[t^{a}, t^{b}] = f_{abc}t^{c}$$

for example $\mathcal{SU}(2) = \mathcal{SP}(1)$

$$t^{a}_{(s)} = J^{a}_{spin=s}$$

 $s = 0, 1/2, 1, 3/2, \dots$
 $n = 1, 2, 3, 4, \dots$

Yang-Mills theory with matter fields

$$\int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{2g^2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$= \int [dA] e^{-\int \frac{1}{2g^2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}} \times \int [d\Phi] [d\Phi^*] e^{-\int \left[D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$= \int [dA] e^{-\int \frac{1}{2g^2} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}} \times \frac{1}{\operatorname{Det}(-(\partial - iA)^2 + m^2)}$$

$$= \int [dA] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \Delta \mathcal{L}(F;m,\Lambda)\right]}$$

$$\int \Delta \mathcal{L}(F; m, \Lambda) = \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^2 + m^2)$$

Yang-Mills theory with matter fields

$$\int \Delta \mathcal{L}(F; m, \Lambda) = \operatorname{Tr}_{\Lambda} \log(-(\partial - iA)^2 + m^2)$$
$$= -\operatorname{Tr} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \exp\left[-s(-(\partial - iA)^2 + m^2)\right]$$

$$= -\int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \operatorname{tr} \int dx^4 \langle x | \exp\left[-s(-(\partial - iA)^2 + m^2)\right] |x\rangle$$

$$= -\frac{1}{16\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s^3} \ e^{-m^2 s} \times n$$

$$+ \frac{1}{192\pi^2} \int_{1/\Lambda^2}^{\infty} \frac{ds}{s} \ e^{-m^2 s} \times F_{\mu\nu} F^{\mu\nu} \times \mathcal{T}_2(t) \quad + \cdots$$

heat kernel expansion for U(I) R.G.

$$Q_{scalar} \equiv -(\partial - iA)^2 + m^2$$

$$= \underbrace{(-\partial^2 + m^2)}_{Q_{scalar}^{(0)}} + \underbrace{2iA \cdot \partial + i(\partial \cdot A) + A^2}_{Q_{scalar}^{(1)}}$$

$$Q_{spinor} \equiv -\left[\gamma^{\mu}(\partial_{\mu} - iA_{\mu})\right]^2 + m^2$$

$$= 1_{2^{d/2} \times 2^{d/2}} \times \left[-(\partial - iA)^2 + m^2 \right] + iF_{\mu\nu}\gamma^{\mu\nu}$$
$$= 1_{2^{d/2} \times 2^{d/2}} Q_{scalar}^{(0)} + 1_{2^{d/2} \times 2^{d/2}} Q_{scalar}^{(1)} + iF \cdot \gamma$$
$$Q_{spinor}^{(0)} \qquad Q_{spinor}^{(1)}$$

heat kernel expansion for Yang-Mills R.G.

$$Q_{scalar} \equiv -(1_{n \times n}\partial - iA)^2 + m^2 1_{n \times n}$$

$$= \frac{1_{n \times n} (-\partial^2 + m^2)}{Q_{scalar}^{(0)}} + \frac{2iA \cdot \partial + i(\partial \cdot A) + A^2}{Q_{scalar}^{(1)}}$$

$$Q_{spinor} \equiv -\left[\gamma^{\mu}(\partial_{\mu} - iA_{\mu})\right]^2 + m^2$$

$$= 1_{2^{d/2} \times 2^{d/2}} \times \left[-(1_{n \times n} \partial - iA)^2 + m^2 1_{n \times n} \right] + iF_{\mu\nu}\gamma^{\mu\nu}$$
$$= 1_{2^{d/2} \times 2^{d/2}} Q_{scalar}^{(0)} + 1_{2^{d/2} \times 2^{d/2}} Q_{scalar}^{(1)} + iF \cdot \gamma$$
$$Q_{spinor}^{(0)} \qquad Q_{spinor}^{(1)}$$

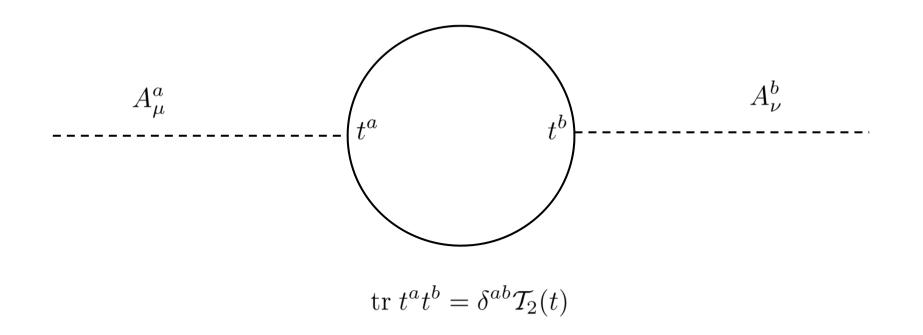
heat kernel expansion

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$

$$G_{\beta} = G_{\beta}^{(0)} + G_{\beta}^{(1)} + G_{\beta}^{(2)} + \cdots$$

$$G_{\beta}^{(n)}(x;y) = -\int_{0}^{\beta} ds \int_{z} G_{\beta-s}^{(0)}(x;z) Q^{(1)} G_{s}^{(n-1)}(z;y)$$

$$= (-1)^n \int_0^\beta ds_1 \int_0^{s_1} ds_2 \dots \int_0^{s_{n-1}} ds_n \int_{z_1} \dots \int_{z_n} G^{(0)}_{\beta-s_1}(x;z_1) Q^{(1)} G_{s_1-s_2}(z_1;z_2) \dots Q^{(1)} G^{(0)}_{s_n}(z_n;y)$$



$$W_{eff} = \dots + \int \frac{1}{2g_{ren}^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} + \dots$$

$$\begin{aligned} \frac{1}{2g^2(m,\Lambda;\mu)_{ren}} &= \frac{1}{2g^2} + \frac{1}{96\pi^2} \tilde{I}_4(m_{scalar};\mu,\Lambda) \mathcal{T}_2(t_{scalar}) \\ &+ \frac{4}{96\pi^2} \tilde{I}_4(m_{spinor};\mu,\Lambda) \mathcal{T}_2(t_{spinor}) \end{aligned}$$

$$\tilde{I}_4(m;\mu,\Lambda) \equiv \int_{1/\Lambda^2}^{1/\mu^2} \frac{ds}{s} \ e^{-m^2s}$$

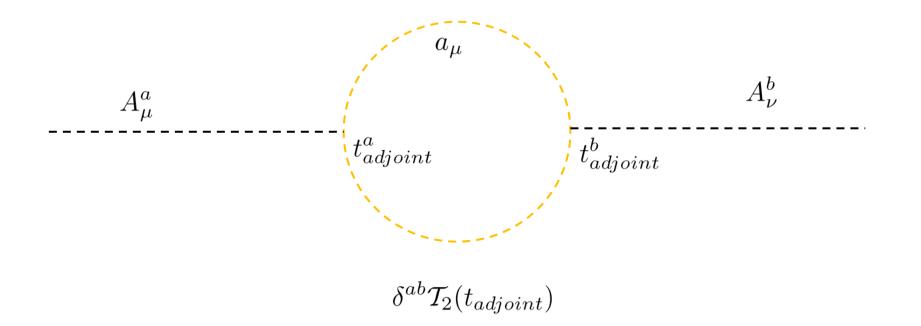
Yang-Mills fields interact among themselves, so there are additional contribution

$$\begin{split} \int_{p^{2} < \mu^{2}} [dA][d\Phi][d\Phi^{*}][\cdots]e^{-W_{eff}(A,\cdots)} \equiv \\ \int_{p^{2} < \Lambda^{2}} [dA][d\Phi][d\Phi^{*}] e^{-\int \left[\frac{1}{2g^{2}} \operatorname{tr} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^{*} D^{\mu} \Phi + m^{2} |\Phi|^{2}\right]} \end{split}$$

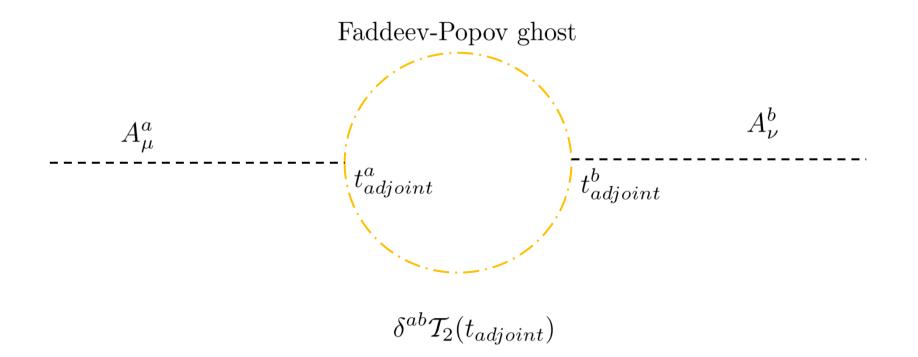
Yang-Mills fields interact among themselves, so there are additional contribution

$$\int \mathcal{L} = \int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right]$$
$$A_{\mu} \to A_{\mu} + a_{\mu}$$
$$\int dx^4 \left[\frac{1}{2g^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} \right] + \left[\frac{1}{2g^2} \mathrm{tr} (D_{\mu} a_{\nu} - D_{\nu} a_{\mu})^2 + \cdots \right]$$

Yang-Mills fields interact among themselves, so there are additional contribution



gauge-fixing introduces further contribution from Faddeev-Popov ghost, which is like minus of a single complex scalar in the adjoint representation

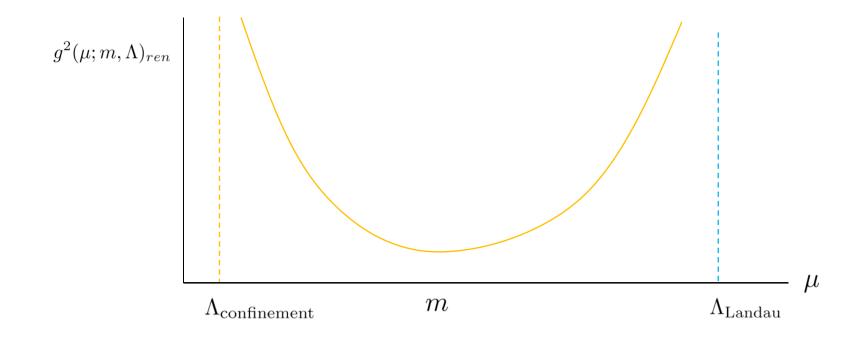


$$W_{eff} = \dots + \int \frac{1}{2g_{ren}^2} \mathrm{tr} F_{\mu\nu} F^{\mu\nu} + \dots$$

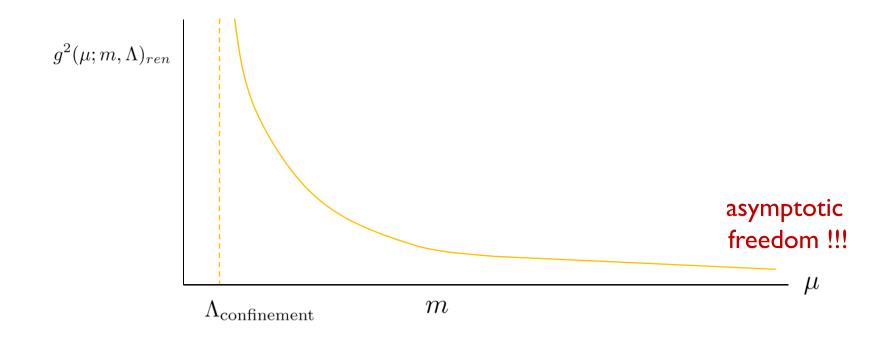
$$\begin{aligned} \frac{1}{2g^2(m,\Lambda;\mu)_{ren}} &= \frac{1}{2g^2} + \frac{1}{96\pi^2} \tilde{I}_4(m_{scalar};\mu,\Lambda) \mathcal{T}_2(t_{scalar}) \\ &+ \frac{4}{96\pi^2} \tilde{I}_4(m_{spinor};\mu,\Lambda) \mathcal{T}_2(t_{spinor}) \\ &- \frac{11}{96\pi^2} \tilde{I}_4(0;\mu;\Lambda) \mathcal{T}_2(t_{adjoint}) \end{aligned}$$

$$\tilde{I}_4(m;\mu,\Lambda) \equiv \int_{1/\Lambda^2}^{1/\mu^2} \frac{ds}{s} \ e^{-m^2s}$$

$$\sum \mathcal{T}_2(t_{scalar}) + 4 \sum \mathcal{T}_2(t_{spinor}) > 11 \mathcal{T}_2(t_{adjoint})$$



$$\sum \mathcal{T}_2(t_{scalar}) + 4 \sum \mathcal{T}_2(t_{spinor}) < 11 \mathcal{T}_2(t_{adjoint})$$



renormalization is selective path-integral

$$\int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$= \int [dA] e^{-\int \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu}} \times \int [d\Phi] [d\Phi^*] e^{-\int [D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2]} \int \Delta \mathcal{L}(m, \Lambda) = \log \operatorname{Det}_{\Lambda}(-(\partial - iA)^2 + m^2)$$

$$= \int [dA] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \Delta \mathcal{L}(F;m,\Lambda)\right]}$$

usual textbook renormalization is selective path-integral + truncation

$$\int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$= \int [dA] e^{-\int \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu}} \times \int [d\Phi] [d\Phi^*] e^{-\int \left[D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$
$$\int \Delta \mathcal{L}(m, \Lambda) = \log \operatorname{Det}_{\Lambda}(-(\partial - iA)^2 + m^2)$$
$$\simeq \# \log(\Lambda/m) F_{\mu\nu} F^{\mu\nu} + \cdots$$

$$\simeq \int [dA] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \# \log(\Lambda/m) F_{\mu\nu} F^{\mu\nu}\right]}$$

but there is far more to such renormalization processes than mere replacement of numbers

$$\int [dA] [d\Phi] [d\Phi^*] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2\right]}$$

$$= \int [dA] e^{-\int \frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu}} \times \int [d\Phi] [d\Phi^*] e^{-\int [D_{\mu} \Phi^* D^{\mu} \Phi + m^2 |\Phi|^2]} \\ \int \Delta \mathcal{L}(m, \Lambda) = \log \operatorname{Det}_{\Lambda}(-(\partial - iA)^2 + m^2)$$

$$= \int [dA] e^{-\int \left[\frac{1}{4g^2} F_{\mu\nu} F^{\mu\nu} + \Delta \mathcal{L}(F;m,\Lambda)\right]}$$

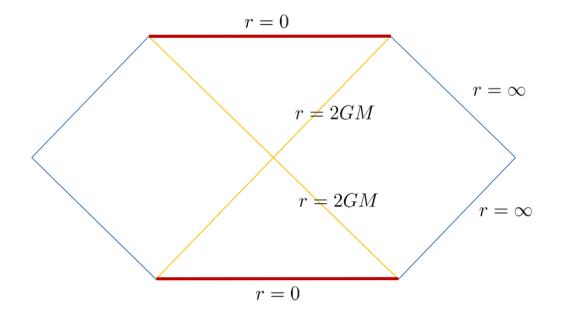
for example, what kind of things happen if quantum matter "renormalize" geometry?

$$\int [dg][d\Phi][d\Phi^*] e^{\int \sqrt{g} \left[\frac{1}{16\pi G_N}R(g) - D_\mu \Phi^* D^\mu \Phi - m^2 |\Phi|^2\right]}$$
$$= \int [dg]e^{\int \frac{1}{16\pi G_N}\sqrt{g}R(g)} \times \int [d\Phi][d\Phi^*] e^{-\int \sqrt{g} \left[D_\mu \Phi^* D^\mu \Phi + m^2 |\Phi|^2\right]}$$
$$\int \Delta \mathcal{L}(g;m,\Lambda) = \log \operatorname{Det}_{\Lambda}(-\nabla^2 + m^2)$$

$$= \int [dg] e^{\int \left[\frac{1}{16\pi G_N}\sqrt{g}R(g) - \Delta \mathcal{L}(g;m,\Lambda)\right]}$$

2d Weyl anomaly and s-wave Hawking radiation

$$g^{(4)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2\left[d\theta^2 + \sin^2\theta d\phi^2\right]$$



$$g^{(4)} = -\left(1 - \frac{2GM}{r}\right) dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1} dr^{2} + r^{2} \left[d\theta^{2} + \sin^{2}\theta d\phi^{2}\right]$$

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 0$$

$$0 = \delta \int dx^{4} \frac{1}{16\pi G} \sqrt{-g^{(4)}} R^{(4)}$$

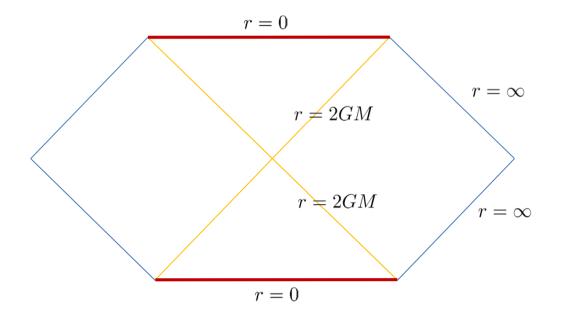
$$e^{-2\Phi} = r^2 \qquad g^{(2)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2$$

$$0 = \delta \int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}}e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi}\right]$$

$$g^{(4)} = g^{(2)} + e^{-2\Phi} \left[d\theta^2 + \sin^2\theta d\phi^2\right]$$

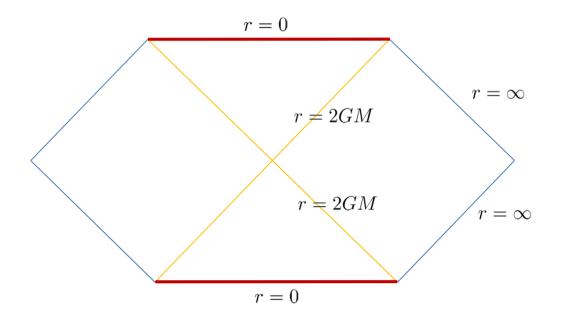
$$0 = \delta \int dx^4 \frac{1}{16\pi G} \sqrt{-g^{(4)}}R^{(4)}$$

$$g^{(2)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2$$



$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dt^2 + dr_*^2\right] \qquad r_* = \int \frac{r}{r - r_H} dr$$

 $= r + r_H \log(r/r_H - 1)$



in d=2, metric can always be put in such a conformal form

 $g^{(2)} = e^{2\rho(x)} dx_i dx^i$

$$\int [dg] [d\Phi] e^{-S(g,\Phi)} \int [dX] e^{-\int dx^2 \sqrt{g} \left[g^{ij} \partial_i X \partial_j X + m^2 X^2\right]}$$

$$\simeq \int [dg] [d\Phi] e^{-S(g,\Phi)} \frac{1}{\sqrt{\operatorname{Det}\left(-\nabla^2 + m^2\right)}}$$
$$W(g;m) \equiv \frac{1}{2} \operatorname{Tr} \log\left(-\nabla^2 + m^2\right)$$

$$= \int [dg] [d\Phi] e^{-S(g,\Phi) - W(g;m)}$$

$$W(g;m) \equiv \frac{1}{2} \operatorname{Tr} \log \left(-\nabla^2 + m^2 \right) \qquad \nabla^2 = \frac{1}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$

$$= -\frac{1}{2} \int_{\epsilon=1/\Lambda^2}^{\infty} \frac{ds}{s} \operatorname{Tr} \left[e^{s\nabla^2 - sm^2} \right]$$

$$= -\frac{1}{2} \int_{\epsilon}^{\infty} \frac{ds}{s} \ e^{-sm^2} \mathrm{Tr}\left[e^{s\nabla^2}\right]$$

$$W(e^{2f}g;m) = -\frac{1}{2} \int_{\epsilon}^{\infty} \frac{ds}{s} \ e^{-sm^2} \operatorname{Tr}\left[e^{se^{-2f}\nabla^2}\right]$$

$$W(g;m) \equiv \frac{1}{2} \operatorname{Tr} \log \left(-\nabla^2 + m^2 \right) \qquad \nabla^2 = \frac{1}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$
$$= -\frac{1}{2} \int_{\epsilon}^{\infty} \frac{ds}{s} e^{-sm^2} \operatorname{Tr} \left[e^{s\nabla^2} \right] \qquad \qquad \int g \to \tilde{g}_{ij} = e^{2f} g_{ij}$$
$$\tilde{\nabla}^2 = \frac{e^{-2f}}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$
$$\delta = m(n-1) \int_{\epsilon}^{\infty} e^{-sm^2} \left[-\tilde{\chi} \partial_i \sqrt{g} g^{ij} \partial_j \right]$$

$$\frac{\delta}{\delta f(x)} W(\tilde{g};m) = \int_{\epsilon}^{\infty} ds \ e^{-sm^2} \operatorname{Tr} \left[\delta_x \tilde{\nabla}^2 e^{s\tilde{\nabla}^2} \right]$$

$$\frac{\delta}{\delta f(x)}W(\tilde{g};m) = \int_{\epsilon}^{\infty} ds \ e^{-sm^2} \mathrm{Tr}\left[\delta_x \frac{\partial}{\partial s} e^{s\tilde{\nabla}^2}\right]$$

$$W(g;m) \equiv \frac{1}{2} \operatorname{Tr} \log \left(-\nabla^2 + m^2 \right) \qquad \nabla^2 = \frac{1}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$
$$= -\frac{1}{2} \int_{\epsilon}^{\infty} \frac{ds}{s} e^{-sm^2} \operatorname{Tr} \left[e^{s\nabla^2} \right] \qquad \qquad \int_{\epsilon}^{g \to \tilde{g}_{ij}} e^{2f} g_{ij}$$
$$\tilde{\nabla}^2 = \frac{e^{-2f}}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$

$$\frac{\delta}{\delta f(x)} W(\tilde{g};m) = \int_{\epsilon}^{\infty} ds \ e^{-sm^2} \frac{\partial}{\partial s} \operatorname{Tr} \left[\delta_x e^{s\tilde{\nabla}^2} \right]$$

$$\frac{\delta}{\delta f(x)}W(\tilde{g};m) = e^{-sm^2} \operatorname{Tr}\left[\delta_x e^{\epsilon \tilde{\nabla}^2}\right] \bigg|_{\epsilon}^{\infty} - \int_{\epsilon}^{\infty} ds \; \frac{de^{-sm^2}}{ds} \operatorname{Tr}\left[\delta_x e^{s \tilde{\nabla}^2}\right]$$

$$\frac{\delta}{\delta f(x)}W(\tilde{g};m) = -e^{-\epsilon m^2} \operatorname{Tr}\left[\delta_x e^{\epsilon \tilde{\nabla}^2}\right] + \int_{\epsilon}^{\infty} ds \ m^2 e^{-sm^2} \operatorname{Tr}\left[\delta_x e^{s \tilde{\nabla}^2}\right]$$

$$W(g;m) \equiv \frac{1}{2} \text{Tr} \log \left(-\nabla^2 + m^2 \right) \qquad \qquad \nabla^2 = \frac{1}{\sqrt{g}} \partial_i \sqrt{g} g^{ij} \partial_j$$

$$2g_{ij}(x)\frac{\delta}{\delta g^{ij}(x)}W(g;m=0) = -\frac{\delta}{\delta f(x)}W(\tilde{g};m=0)\Big|_{f=1}$$
$$= \operatorname{Tr}\left[\delta_x e^{\epsilon \nabla^2}\right]$$

Taylor expansion of metric

$$g_{jk}(x+\delta x) = g_{jk}(x) + \frac{\partial g_{jk}}{\partial x^p} \delta x^p + \frac{1}{2} \frac{\partial^2 g_{jk}}{\partial x^p \partial x^q} \delta x^p \delta x^q + O(\delta x^3)$$

with geodesic normal coordinate system

$$g_{jk}(x+\delta x) = g_{jk}(x) + \frac{\partial g_{jk}}{\partial x^p} \delta x^p + \frac{1}{2} \frac{\partial^2 g_{jk}}{\partial x^p \partial x^q} \delta x^p \delta x^q + O(\delta x^3)$$
$$= \delta_{jk} + \frac{1}{3} R_{pjkq}(x) \delta x^p \delta x^q + O(\delta x^3)$$

with geodesic normal coordinate system

$$g_{jk}(x+\delta x) = \delta_{jk} + \frac{1}{3}R_{pjkq}(x)\delta x^p \delta x^q + O(\delta x^3)$$

$$\Gamma_{mjk}(x+\delta x) = \frac{1}{6} \left(-R_{mjkp}(x)\delta x^p - R_{pjkm}(x)\delta x^p + R_{kmjp}(x)\delta x^p + R_{pmjk}(x)\delta x^p + R_{jmkp}(x)\delta x^p + R_{pmkj}(x)\delta x^p \right) + O(\delta x^2)$$
$$= \frac{1}{3} \left(R_{pkmj}(x) - R_{pjkm}(x) \right) \delta x^p + O(\delta x^2)$$

$$R_{mjkl}(x) = \left[\partial_k \Gamma_{mjl} - \partial_l \Gamma_{mjk}\right] \Big|_x = \frac{1}{3} \left(R_{klmj}(x) - R_{kjlm}(x) - R_{lkmj}(x) + R_{ljkm}(x) \right)$$
$$= \frac{1}{3} \left(2R_{klmj}(x) + R_{lmjk}(x) + R_{ljkm}(x) \right)$$
$$= \frac{1}{3} \left(2R_{klmj}(x) - R_{lkmj}(x) \right) = R_{klmj}(x) = R_{mjkl}(x)$$

with geodesic normal coordinate system

$$g_{jk}(x+\delta x) = \delta_{jk} + \frac{1}{3}R_{pjkq}(x)\delta x^p \delta x^q + O(\delta x^3)$$
$$g^{mk} \simeq \delta^{mk} + \frac{1}{3}R_{mpkq}(x)\delta x^p \delta x^q$$
$$\sqrt{g} \simeq 1 - \frac{1}{6}R_{pq}(x)\delta x^p \delta x^q$$
$$\frac{1}{\sqrt{g}} \simeq 1 + \frac{1}{6}R_{pq}(x)\delta x^p \delta x^q$$

with geodesic normal coordinate system

$$g_{jk}(x) = \delta_{jk} + \frac{1}{3}R_{pjkq}(0)x^{p}x^{q} + O(x^{3})$$

$$\nabla^{2} \simeq \left(1 + \frac{1}{6}R_{ij}x^{i}x^{j}\right)\partial^{m}\left(\delta_{mk}\left(1 - \frac{1}{6}R_{pq}x^{p}x^{q}\right) + \frac{1}{3}R_{mpkq}x^{p}x^{q}\right)\partial^{k}$$

$$\simeq \partial^{2} - \frac{1}{3}R_{kq}x^{q}\partial^{k} + \frac{1}{3}R_{mpkq}\partial^{m}x^{p}x^{q}\partial^{k}$$

$$\simeq \partial^{2} - \frac{1}{3}R_{kq}x^{q}\partial^{k} + \frac{1}{3}R_{mpkq}\partial^{m}x^{p}x^{q}\partial^{k}$$

with geodesic normal coordinate system

$$g_{jk}(x) = \delta_{jk} + \frac{1}{3}R_{pjkq}(0)x^p x^q + O(x^3)$$

$$Q^{(1)}$$

$$Q = -\nabla^2 = -\frac{1}{\sqrt{g}}\partial_m \sqrt{g}g^{mk}\partial_k \simeq -\partial^2 + \frac{1}{3}R_{kq}x^q\partial^k - \frac{1}{3}R_{mpkq}\partial^m x^p x^q\partial^k$$

with geodesic normal coordinate system

$$g_{jk}(x) = \delta_{jk} + \frac{1}{3} R_{pjkq}(0) x^p x^q + O(x^3)$$

$$Q^{(1)}G_s(x;0) = \left[\frac{1}{3} R_{mk}(0) x^m \partial^k - \frac{1}{3} R_{mpkq}(0) \partial^p x^m x^k \partial^q\right] G_s^{(0)}(x;0)$$

$$= \left[-\frac{1}{6s} R_{mk}(0) x^m x^k + \frac{1}{6s} R_{mpkq}(0) \partial^p x^m x^k x^q\right] G_s^{(0)}(x;0)$$

$$= \left[-\frac{1}{6s} R_{mk}(0) x^m x^k\right] G_s^{(0)}(x;0) = \left[\frac{1}{3} R_{mk}(0) x^m \partial^k\right] G_s^{(0)}(x;0)$$

heat kernel expansion

$$-\frac{\partial}{\partial\beta}G_{\beta}(x;y) = QG_{\beta}(x;y) = \left(Q^{(0)} + Q^{(1)}\right)G_{\beta}(x;y)$$
$$Q^{(0)} = -\partial^{2} + m^{2}$$
$$Q^{(1)} = b_{\mu\nu}\delta x^{\mu}\partial^{\nu} + c_{\mu\nu}\delta x^{\mu}\delta x^{\nu}$$

$$G_{\beta}^{(1)}(x;x) = \frac{e^{-\beta m^2}}{(4\pi\beta)^{d/2}} \left[\frac{\beta}{2} b_{\mu}{}^{\mu}(x) - \frac{\beta^2}{3} c_{\mu}{}^{\mu}(x)\right] + O(\beta^2 \partial \partial b, \beta^3 \partial \partial c)$$

with geodesic normal coordinate system at x

$$g_{jk}(x+\delta x) = \delta_{jk} + \frac{1}{3}R_{pjkq}(x)\delta x^p \delta x^q + O(x^3)$$
$$\langle x|e^{s\nabla^2}|x\rangle = \frac{1}{(4\pi s)^{d/2}} \left(1 + \frac{s}{6}R(x) + \cdots\right)$$
$$= \frac{\sqrt{g(x)}}{(4\pi s)^{d/2}} \left(1 + \frac{s}{6}R(x) + \cdots\right)$$

a 2d massless real scalar field coupled to 2d "gravity"

$$W(g;m) \equiv \frac{1}{2} \mathrm{Tr} \log \left(-\nabla^2 + m^2 \right)$$

$$2g_{ij}(x)\frac{\delta}{\delta g^{ij}(x)}W(g;0) = \operatorname{Tr}\left[\delta_x e^{\epsilon\nabla^2}\right] = \langle x|e^{\epsilon\nabla^2}|x\rangle$$
$$= \frac{\sqrt{g}}{4\pi\epsilon} + \frac{1}{24\pi}\sqrt{g}R^{(2)} + O(\epsilon R^2)$$

a 2d massless real scalar field coupled to 2d "gravity"

$$W(g;m) \equiv \frac{1}{2} \mathrm{Tr} \log \left(-\nabla^2 + m^2 \right)$$

$$2g_{ij}(x)\frac{\delta}{\delta g^{ij}(x)}W(g;0) = \operatorname{Tr}\left[\delta_x e^{\nabla^2/\Lambda^2}\right] = \langle x|e^{\nabla^2/\Lambda^2}|x\rangle$$

$$\sqrt{g} + 2 = 1 \quad \text{Fr}(2) = 0 \quad \text{Fr}(2)$$

$$= \frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{24\pi}\sqrt{g}R^{(2)} + O(R^2/\Lambda^2)$$

this result is widely known as Weyl or 2d conformal anomaly

$$W(g;0) \equiv \frac{1}{2} \operatorname{Tr} \log \left(-\nabla^{2}\right) = -\frac{1}{2} \log \left[\int [dX] \ e^{-\int dx^{2} \sqrt{g} \left[g^{ij} \partial_{i} X \partial_{j} X\right]}\right]$$
$$g_{ij} = e^{2\rho} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= -\frac{1}{2} \log \left[\int [dX] \ e^{-\int dx^{2} \left[\delta^{ij} \partial_{i} X \partial_{j} X\right]}\right]$$

$$2g_{ij}\frac{\delta}{\delta g^{ij}}W(g;0) = \frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{24\pi}\sqrt{g}R^{(2)} + O(R^2/\Lambda^2)$$

integrating Weyl anomaly

$$2g_{ij}\frac{\delta}{\delta g^{ij}}W(g=e^{2\rho}\delta;0) = \frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{24\pi}\sqrt{g}R^{(2)} + \cdots$$
$$-\frac{\delta}{\delta\rho}W(g=e^{2\rho}\delta;0) = \frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{24\pi}\left[-2\partial^2\rho\right] + \cdots$$
$$W(g=e^{2\rho}\delta;0) = -\frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{24\pi}\left[\rho\ \partial^2\rho\right] + \cdots$$

$$= -\frac{\sqrt{g}}{4\pi}\Lambda^2 + \frac{1}{96\pi} \left[\sqrt{g} R^{(2)} \frac{1}{\nabla^2} R^{(2)}\right] + \cdots$$

quantizing a 2d massless real scalar "renormalize" 2d gravity as

$$\int [dg] [d\Phi] e^{-S(g,\Phi)} \int [dX] e^{-\int dx^2 \sqrt{g} \left[g^{ij} \partial_i X \partial_j X\right]}$$

$$\simeq \int [dg] [d\Phi] e^{-S(g,\Phi)} \frac{1}{\sqrt{\operatorname{Det}\left(-\nabla^2\right)}}$$

$$\simeq \int [dg] [d\Phi] \operatorname{Exp}\left(-S(g,\Phi) - \frac{1}{96\pi} \int \sqrt{g} \ R^{(2)} \frac{1}{\nabla^2} R^{(2)}\right)$$

quantizing 2d massless real scalars "renormalize" 2d gravity as

$$\int [dg] [d\Phi] e^{-S(g,\Phi)} \int \prod_{m=1}^{N} [dX^m] e^{-\int d\sigma^2 \sqrt{g} \left[g^{ij} \partial_i X^m \partial_j X^m\right]}$$

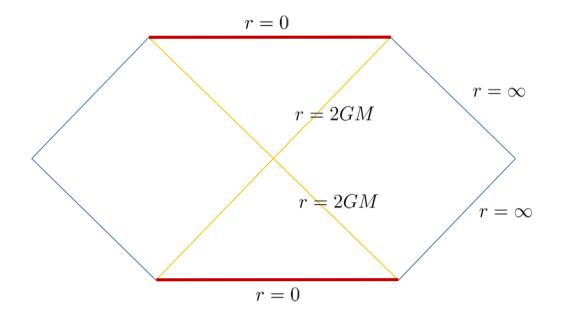
$$\simeq \int [dg] [d\Phi] e^{-S(g,\Phi)} \left[\frac{1}{\sqrt{\operatorname{Det}\left(-\nabla^2\right)}} \right]^N$$

$$\simeq \int [dg] [d\Phi] \operatorname{Exp}\left(-S(g,\Phi) - \frac{N}{96\pi} \int \sqrt{g} \ R^{(2)} \frac{1}{\nabla^2} R^{(2)}\right)$$

s-wave Hawking radiation from black holes

back to Schwarzschild black holes

$$g^{(4)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2\left[d\theta^2 + \sin^2\theta d\phi^2\right]$$



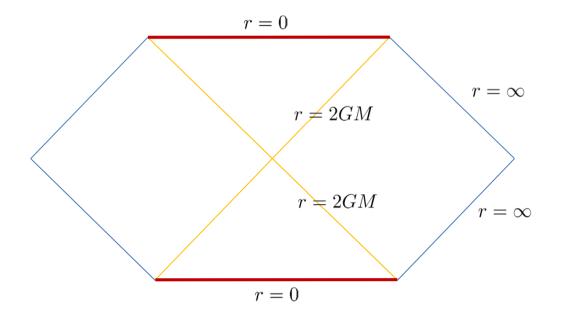
$$e^{-2\Phi} = r^2 \qquad g^{(2)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2$$

$$0 = \delta \int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}}e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi}\right]$$

$$g^{(4)} = g^{(2)} + e^{-2\Phi} \left[d\theta^2 + \sin^2\theta d\phi^2\right]$$

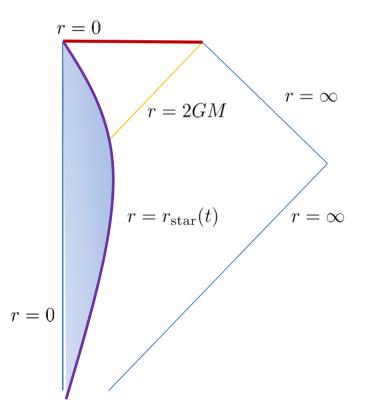
$$0 = \delta \int dx^4 \frac{1}{16\pi G} \sqrt{-g^{(4)}}R^{(4)}$$

$$g^{(2)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2$$



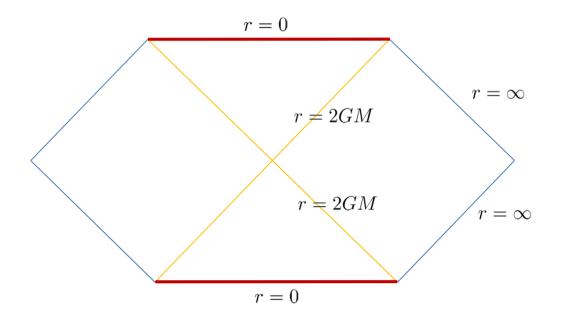
black holes from collapsing stars

$$g^{(2)}\Big|_{r>r_{\rm star}} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2$$

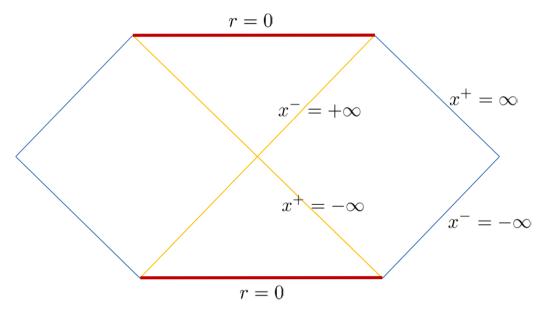


$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dt^2 + dr_*^2\right] \qquad r_* = \int \frac{r}{r - r_H} dr$$

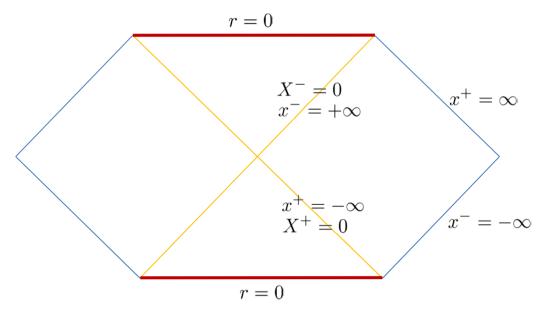
 $= r + r_H \log(r/r_H - 1)$



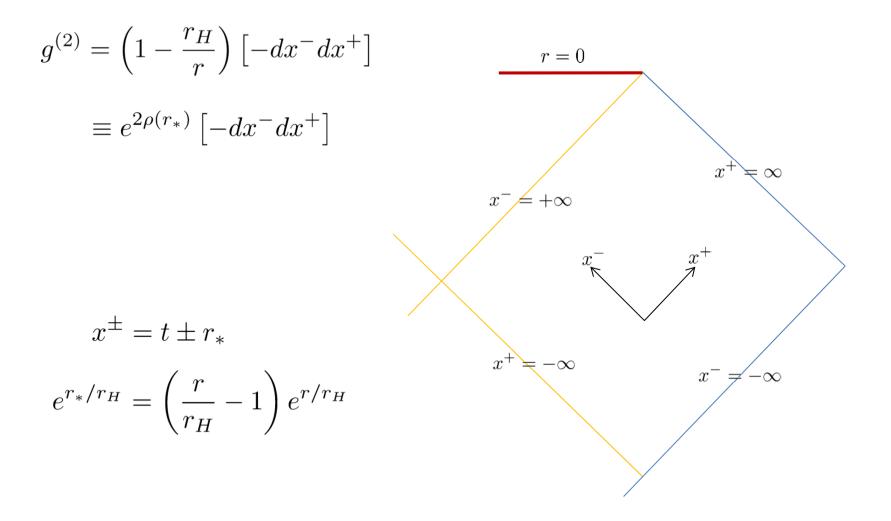
$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right] \equiv e^{2\rho(r_*)} \left[dx^- dx^+\right]$$
$$x^{\pm} = t \pm r_* \qquad e^{r_*/r_H} = \left(\frac{r}{r_H} - 1\right) e^{r/r_H}$$



$$g^{(2)} = \frac{4r_H}{r} e^{-r/r_H} \left[-dX^- dX^+ \right] \qquad X^{\pm} = \pm r_H e^{\pm x^{\pm}/2r_H}$$
$$x^{\pm} = t \pm r_* \qquad e^{r_*/r_H} = \left(\frac{r}{r_H} - 1\right) e^{r/r_H}$$



black holes from collapsing stars



s-waves of N scalar fields, minimally coupled to spherically symmetric geometry

$$S_{\text{classical}} = S_{\text{gravity}} + S_{\text{matter}} = \int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}} e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi} \right] - \sum_{a=1}^N \frac{1}{2} \int dx^2 \sqrt{-g^{(2)}} (\nabla\Psi_a)^2$$

 $S_{\text{renomalized}} = S_{\text{gravity}} + W_{\text{eff}}(g^{(2)}) =$

$$\int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}} e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi} \right] + \int dx^2 \frac{N}{96\pi} \left[\sqrt{-g^{(2)}} R^{(2)} \frac{1}{\nabla^2} R^{(2)} \right] + \cdots$$

quantized S-waves of N scalar fields, minimally coupled to spherically symmetric geometry

$$S_{\text{classical}} = S_{\text{gravity}} + S_{\text{matter}} = \int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}} e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi} \right] - \sum_{a=1}^N \frac{1}{2} \int dx^2 \sqrt{-g^{(2)}} (\nabla\Psi_a)^2$$
$$g^{ij} T_{ij}^{\text{classical}} = \frac{2g^{ij}}{\sqrt{g}} \frac{\delta}{\delta g^{ij}} S_{\text{matter}} = 0$$

 $S_{\text{renomalized}} = S_{\text{gravity}} + W_{\text{eff}}(g^{(2)}) =$

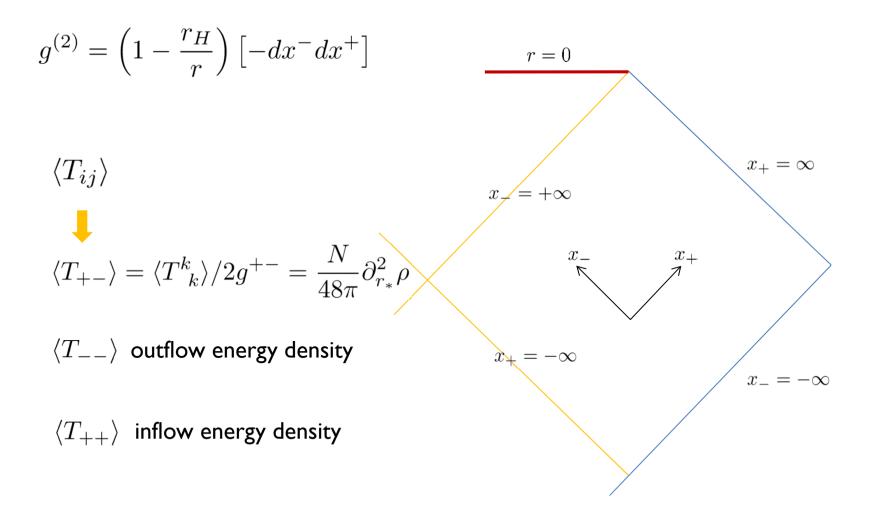
$$\int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}} e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi} \right] + \int dx^2 \frac{N}{96\pi} \left[\sqrt{-g^{(2)}} R^{(2)} \frac{1}{\nabla^2} R^{(2)} \right] + \cdots$$
$$g^{ij} \langle T_{ij} \rangle = \frac{2g^{ij}}{\sqrt{g}} \frac{\delta}{\delta g^{ij}} W_{\text{eff}} = \frac{N}{24\pi} R^{(2)}$$

quantized S-waves of N scalar fields, minimally coupled to spherically symmetric geometry

$$g^{ij}\langle T_{ij}\rangle = \frac{2g^{ij}}{\sqrt{g}}\frac{\delta}{\delta g^{ij}}W_{\text{eff}} = \frac{N}{24\pi}R^{(2)} = -\frac{N}{12\pi}e^{-2\rho}\partial_{r_*}^2\rho \neq 0$$
$$\blacktriangleright \quad \nabla^i\langle T_{ij}\rangle = 0 \qquad \Longrightarrow \quad \langle T_{km}\rangle - \frac{1}{2}g_{km}\langle g^{ij}T_{ij}\rangle \neq 0$$

$$S_{\text{renomalized}} = S_{\text{gravity}} + W_{\text{eff}}(g^{(2)}) =$$

$$\int dx^2 \frac{1}{16\pi G} \sqrt{-g^{(2)}} e^{-2\Phi} \left[R^{(2)} + 2(\nabla\Phi)^2 + 2e^{2\Phi} \right] + \int dx^2 \frac{N}{96\pi} \left[\sqrt{-g^{(2)}} R^{(2)} \frac{1}{\nabla^2} R^{(2)} \right] + \cdots$$



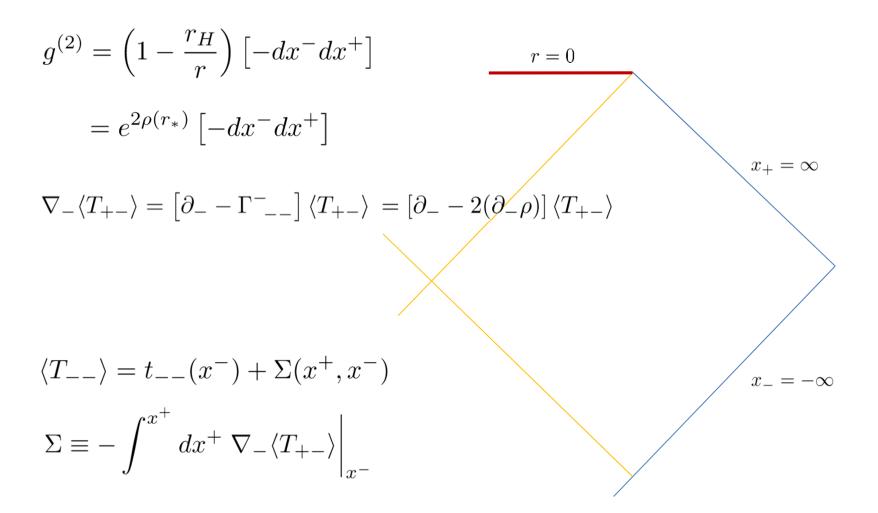
$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right]$$

$$= e^{2\rho(r_*)} \left[-dx^- dx^+\right]$$

$$\langle T_{--} \rangle = t_{--}(x^-) + \Sigma(x^+, x^-)$$

$$\Sigma \equiv -\int^{x^+} dx^+ \nabla_- \langle T_{+-} \rangle \Big|_{x^-}$$

$$x_{-} = -\infty$$



$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right] \qquad r = 0$$

$$= e^{2\rho(r_*)} \left[-dx^- dx^+\right]$$

$$\nabla_- \langle T_{+-} \rangle = \left[\partial_- - \Gamma^-_{--}\right] \langle T_{+-} \rangle = \left[\partial_- - 2(\partial_-\rho)\right] \langle T_{+-} \rangle$$

$$= \frac{1}{96\pi} \left[\partial_{r_*} - 2(\partial_{r_*}\rho)\right] \partial_{r_*}^2 \rho$$

$$\langle T_{--} \rangle = t_{--}(x^-) + \Sigma(x^+, x^-)$$

$$\Sigma \equiv -\int^{x^+} dx^+ \nabla_- \langle T_{+-} \rangle \Big|_{x^-}$$

$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right] \qquad r = 0$$

$$= e^{2\rho(r_*)} \left[-dx^- dx^+\right]$$

$$\nabla_- \langle T_{+-} \rangle = \left[\partial_- - \Gamma^-_{--}\right] \langle T_{+-} \rangle = \left[\partial_- - 2(\partial_- \rho)\right] \langle T_{+-} \rangle$$

$$= -\frac{1}{96\pi} \left[\partial_{r_*} - 2(\partial_{r_*} \rho)\right] \partial_{r_*}^2 \rho$$

$$\langle T_{--} \rangle = t_{--}(x^-) + \Sigma(x^+, x^-)$$

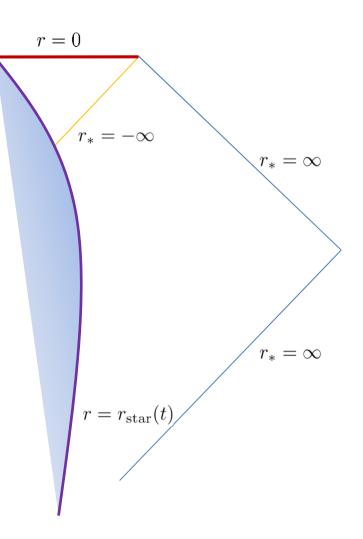
$$\Sigma \equiv -\int^{x^+} dx^+ \left. \nabla_- \langle T_{+-} \rangle \right|_{x^-} = \frac{1}{48\pi} \int dr_* \left[\partial_{r_*} - 2(\partial_{r_*} \rho)\right] \partial_{r_*}^2 \rho$$

$$= \frac{1}{192\pi} \left[2F(r)F''(r) - F'(r)^2\right]$$

$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right]$$
$$g^{ki} \nabla_k \langle T_{ij} \rangle = 0$$
$$\downarrow$$
$$\langle T_{--} \rangle = t_{--}(x^-) + \Sigma(r_*)$$

physical initial condition for $\langle T_{--} \rangle$ is

$$\left\langle T_{--} \right\rangle \Big|_{r=r_{\rm star}(t)} = 0$$



no radiation near horizon implies net outgoing radiation far away

late-time (s-wave) Hawking radiation

$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right] \qquad r = 0 \qquad t_{--}(x^-)$$

$$= -F(r)dt^2 + F(r)^{-1}dr^2 \qquad x_{-} = +\infty \qquad x_{+} = \infty$$

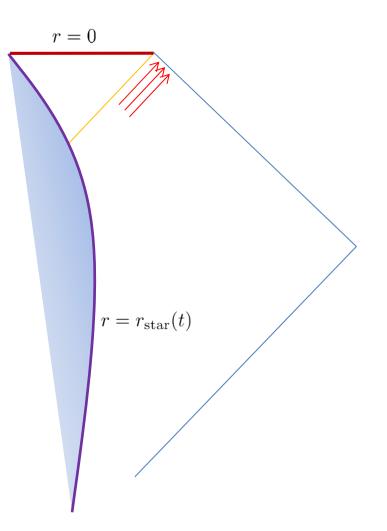
$$\langle T_{--} \rangle \Big|_{x^+ = \infty; x^- \to \infty} = -\Sigma(r = r_H) \qquad x_{+} = x_0^+ \qquad x_{+} = x_0^+ \qquad x_{+} = x_0^+$$

$$= \frac{N}{192\pi} \left[F'(r)^2 - 2F(r)F''(r)\right] \Big|_{r=r_H} \qquad x_{-} = -\infty$$

$$= \frac{N}{192\pi} \frac{1}{r_H^2} \propto T_{\rm BH}^2 = \frac{1}{(8\pi GM)^2}$$

Bogolyubov, Hawking, Unruh, and de Sitter

black holes from collapsing stars



how do we understand such radiation "out of nothing" via direct quantum analysis of the scalar fields ?

how does one define a quantum vacuum for a free field in curved space-time ?

> how does one define a quantum state in curved spacetime ?

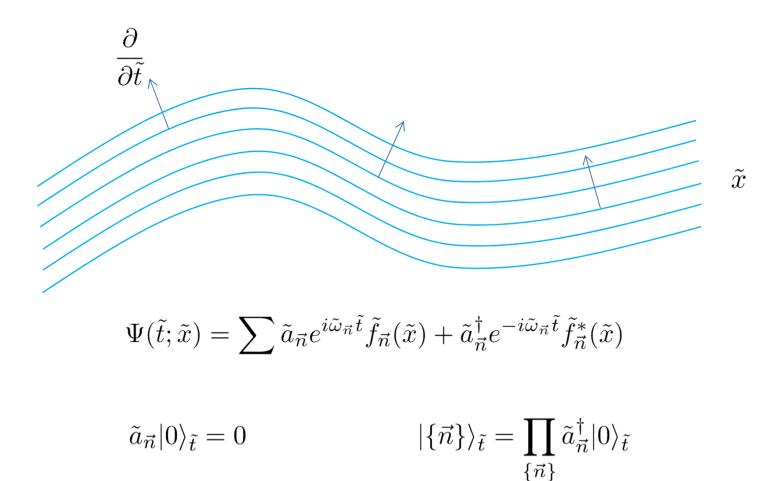
time-slices/coordinates are needed to define a Hilbert space

$$\frac{\partial}{\partial t}$$

$$\Psi(t;x) = \sum a_{\vec{n}} e^{i\omega_{\vec{n}}t} f_{\vec{n}}(x) + a_{\vec{n}}^{\dagger} e^{-i\omega_{\vec{n}}t} f_{\vec{n}}^{*}(x)$$

$$a_{\vec{n}}|0\rangle_{t} = 0 \qquad |\{\vec{n}\}\rangle_{t} = \prod_{\{\vec{n}\}} a_{\vec{n}}^{\dagger}|0\rangle_{t}$$

time-slices/coordinates are needed to define a Hilbert space

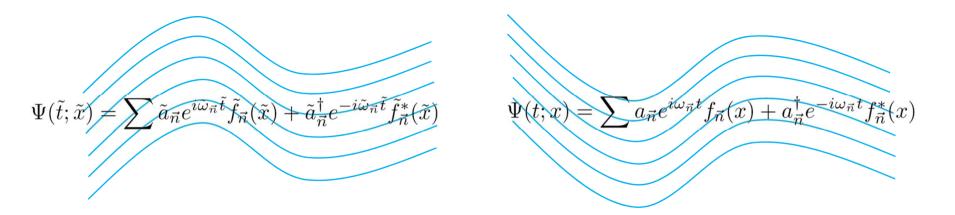


we must have an inner product of wavefunctions, which is invariant under time-shift / coordinate changes

$$(f,g)_t = i \int dS^{\mu} \left[f^* \nabla_{\mu} g - g \nabla_{\nu} f^* \right] \Big|_t$$

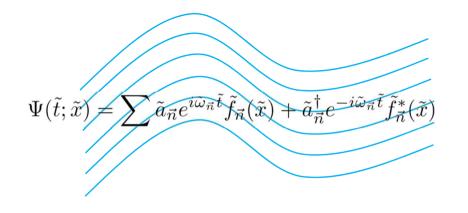
$$(f,g)_t - (f,g)_{t'} = i \int_{t'}^t dV \nabla^\mu \left[f^* \nabla_\mu g - g \nabla_\nu f^* \right] = i \int_{t'}^t dV \left[f^* \nabla^2 g - g \nabla^2 f^* \right] = 0$$

bases related by Bogolyubov transformation



$$\begin{pmatrix} e^{i\tilde{\omega}_{\vec{n}}\tilde{t}}\tilde{f}_{\vec{n}}\\ e^{-i\tilde{\omega}_{\vec{n}}}\tilde{f}_{\vec{n}}^{*} \end{pmatrix} = \sum_{\vec{k}} \begin{pmatrix} \alpha_{\vec{n};\vec{k}} & \beta_{\vec{n};\vec{k}} \\ \beta_{\vec{n};\vec{k}}^{*} & \alpha_{\vec{n};\vec{k}}^{*} \end{pmatrix} \begin{pmatrix} e^{i\omega_{\vec{n}}t}f_{\vec{n}} \\ e^{-i\omega_{\vec{n}}}f_{\vec{n}}^{*} \end{pmatrix}$$

bases related by Bogolyubov transformation

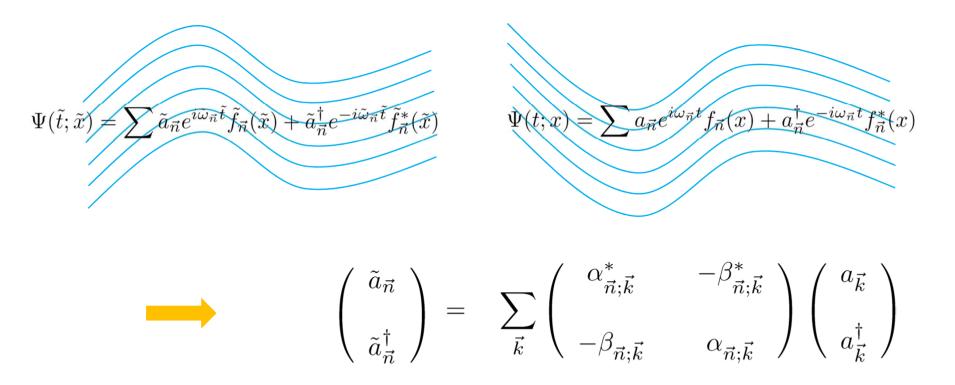




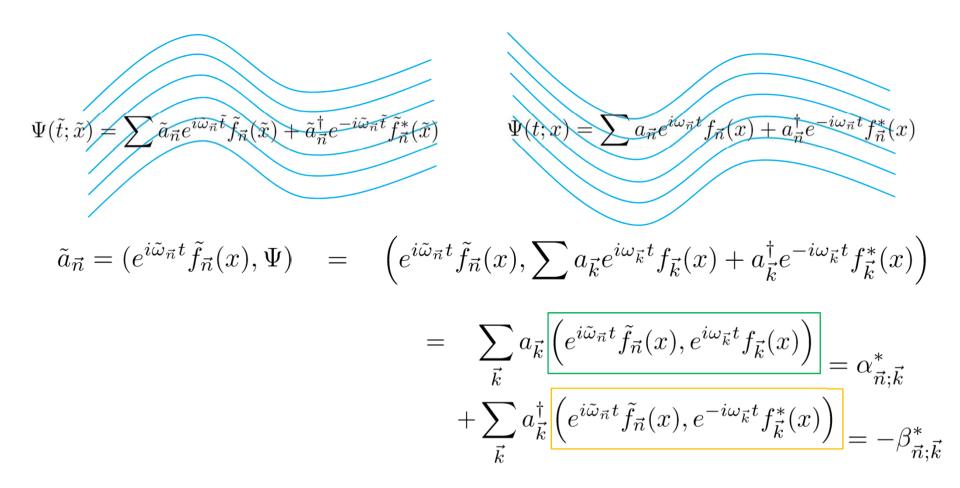
$$\begin{pmatrix} e^{i\tilde{\omega}_{\vec{n}}\tilde{t}}\tilde{f}_{\vec{n}}, e^{i\tilde{\omega}_{\vec{m}}}\tilde{f}_{\vec{m}} \end{pmatrix} = \delta_{\vec{n},\vec{m}} \qquad \qquad \alpha \alpha^{\dagger} - \beta \beta^{\dagger} = I$$

$$\begin{pmatrix} e^{i\tilde{\omega}_{\vec{n}}\tilde{t}}\tilde{f}_{\vec{n}}, e^{-i\tilde{\omega}_{\vec{m}}}\tilde{f}_{\vec{m}}^{*} \end{pmatrix} = 0 \qquad \qquad \alpha \beta^{T} - \beta \alpha^{T} = 0$$

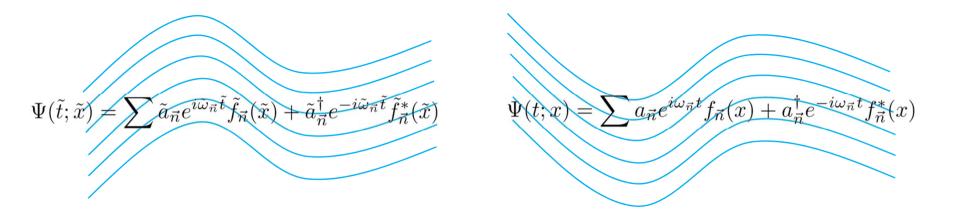
 \rightarrow operators related by Bogolyubov transformation



with operators related by Bogolyubov transformation

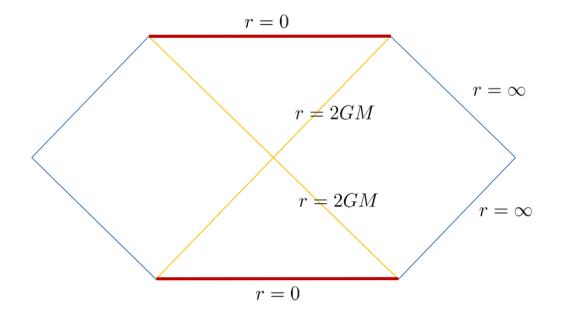


the vacuum of one Hilbert space is not the vacuum of another



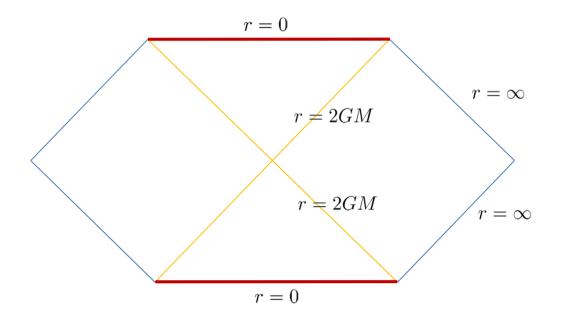
$$\langle \tilde{N}_{\vec{n}} \rangle_t = {}_t \langle 0 | \tilde{a}_{\vec{n}}^{\dagger} \tilde{a}_{\vec{n}} | 0 \rangle_t = \sum_{\vec{k}} \beta_{\vec{n};\vec{k}} \beta_{\vec{n};\vec{k}}^* \qquad a_{\vec{n}} | 0 \rangle_t = 0$$
$$\begin{bmatrix} a_{\vec{n}}^{\dagger}, a_{\vec{m}} \end{bmatrix} = \delta_{\vec{n},\vec{m}}$$

$$g^{(4)} = -\left(1 - \frac{2GM}{r}\right)dt^2 + \left(1 - \frac{2GM}{r}\right)^{-1}dr^2 + r^2\left[d\theta^2 + \sin^2\theta d\phi^2\right]$$

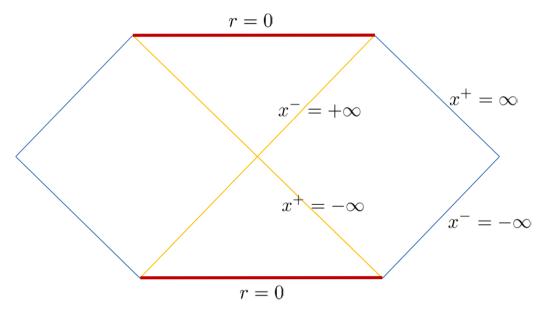


$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dt^2 + dr_*^2\right] \qquad r_* = \int \frac{r}{r - r_H} dr$$

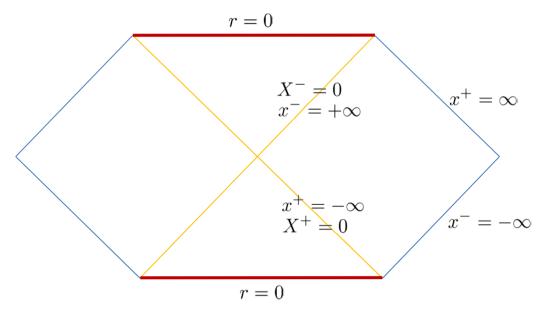
 $= r + r_H \log(r/r_H - 1)$

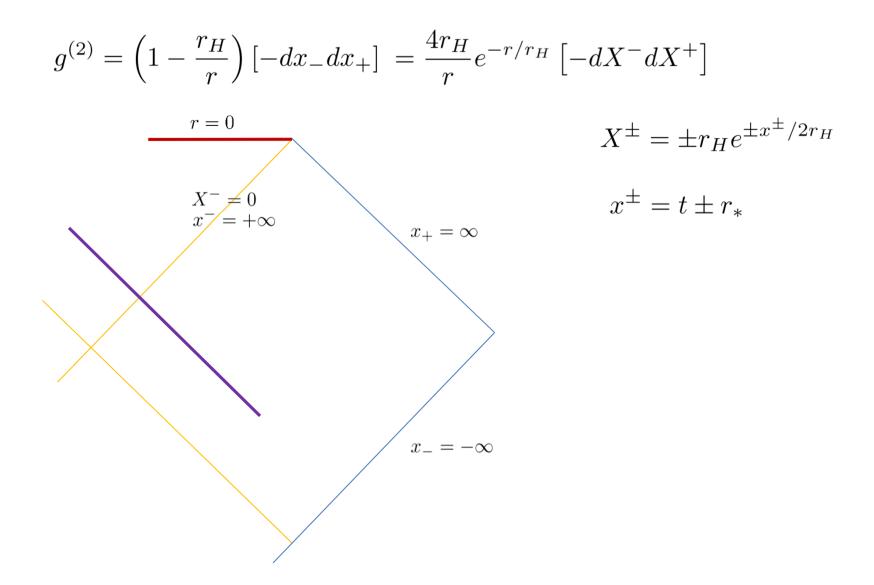


$$g^{(2)} = \left(1 - \frac{r_H}{r}\right) \left[-dx^- dx^+\right] \equiv e^{2\rho(r_*)} \left[dx^- dx^+\right]$$
$$x^{\pm} = t \pm r_* \qquad e^{r_*/r_H} = \left(\frac{r}{r_H} - 1\right) e^{r/r_H}$$



$$g^{(2)} = \frac{4r_H}{r} e^{-r/r_H} \left[-dX^- dX^+ \right] \qquad X^{\pm} = \pm r_H e^{\pm x^{\pm}/2r_H}$$
$$x^{\pm} = t \pm r_* \qquad e^{r_*/r_H} = \left(\frac{r}{r_H} - 1\right) e^{r/r_H}$$





$$X^{\pm} = \pm r_H e^{\pm x^{\pm}/2r_H} \qquad x^{\pm} = t \pm r_*$$

sensible for observers at the future horizon

 $X^{-} = 0$

 $= +\infty$

sensible for observers far away from black hole

$$e^{\pm i\Omega X^{-}}$$

 $e^{\pm i\omega x^{-}}$

VS.

$$\sim e^{\pm i\omega(t-r)}$$

modes moving toward infinity

$$X^{\pm} = \pm r_H e^{\pm x^{\pm}/2r_H} \qquad x^{\pm} = t \pm r_*$$

sensible for observers at the future horizon

 $e^{\pm i\Omega X^{-}}$

VS.

 $X^{-} = 0$

 $= +\infty$

sensible for observers far away from black hole

$$e^{\pm i\omega x^{-}}\Theta(-X^{-})$$

invisible but necessary $\pm i \omega x^{-} \circ (x - x)$

$$e^{\pm i\omega x^{-}}\Theta(X^{-})$$

$$X_{\text{out}}^{\pm} = \pm r_H e^{\pm x_{\text{out}}^{\pm}/2r_H} \qquad \qquad x_{\text{out}}^{\pm} = t \pm r_*$$

sensible for observers at the future horizon

 $X^{-} = 0$

 $= +\infty$

$$U_{\Omega} = e^{i\Omega X^{-}}$$
 vs.

sensible for observers far away from black hole

$$v_{\omega}^{\text{out}} = e^{i\omega x^{-}}\Theta(-X^{-})$$

invisible but necessary $v_{\omega}^{\rm in} = e^{\pm i\omega x^-} \Theta(X^-)$

what if the field is massive ?

what about higher angular momentum mode ?

what if the field has intrinsic spin ?

mode expansion of massive scalars in tortoise coordinate

$$-\nabla^2 + m^2 = -\frac{1}{\sqrt{g}}\partial_i\sqrt{g}g^{ij}\partial_j + m^2$$

$$= -g^{ij}\partial_i\partial_j + \dots + m^2$$

$$= \left(1 - \frac{r_H}{r}\right)^{-1} \left[\partial_t^2 - \partial_{r_*}^2\right] + \frac{L^2}{r^2} + \dots + m^2$$
$$= \left(1 - \frac{r_H}{r}\right)^{-1} \left[\partial_+\partial_-\right] + \dots + m^2$$

mode expansion of massive scalars in tortoise coordinate

$$\left(-\nabla^2 + m^2\right)\Psi = 0$$

$$\partial_+\partial_-\Psi + \left(1 - \frac{r_H}{r}\right) \left[m^2 + \cdots\right]\Psi = 0$$

$$\left(1 - \frac{r_H}{r}\right) \simeq e^{r_*/r_H} = e^{-|r_*|/r_H} \quad \text{near } r = r_H$$

mode expansion in tortoise coordinate

intrinsic spin, angular momentum, curvature effect, \downarrow $\partial_+\partial_-\Psi + \left(1 - \frac{r_H}{r}\right) \left[m^2 + \cdots\right] \Psi = 0$

$$\left(1 - \frac{r_H}{r}\right) \simeq e^{r_*/r_H} = e^{-|r_*|/r_H} \quad \text{near } r = r_H$$

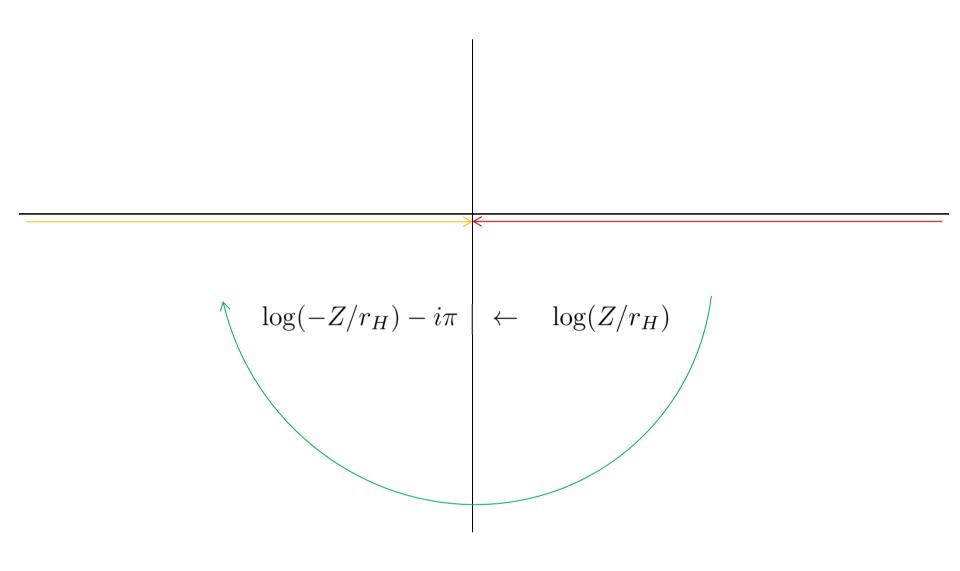
$$X_{\text{out}}^{\pm} = \pm r_H e^{\pm x_{\text{out}}^{\pm}/2r_H}$$
 $x_{\text{out}}^{\pm} = \pm 2r_H \log(\pm X^{\pm}/r_H)$

$$\alpha_{\Omega;\omega}^{\text{out}} = \left(U_{\Omega}, v_{w}^{\text{out}}\right) \sim \int_{-\infty}^{0} dX^{-} e^{-i\Omega X^{-}} e^{-i\omega \cdot 2r_{H} \log(-X^{-}/r_{H})}$$
$$\beta_{\Omega;\omega}^{\text{out}} = \left(U_{\Omega}^{*}, v_{w}^{\text{out}}\right) \sim \int_{-\infty}^{0} dX^{-} e^{i\Omega X^{-}} e^{-i\omega \cdot 2r_{H} \log(-X^{-}/r_{H})}$$

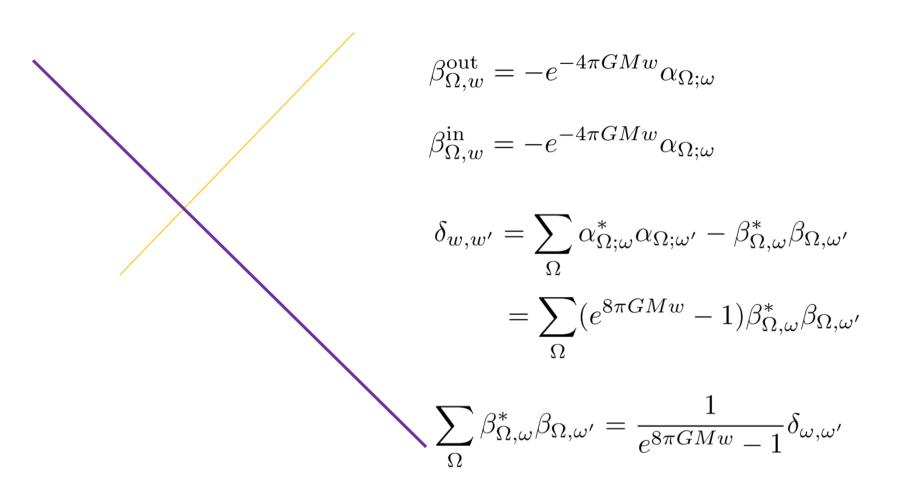
$$X_{\text{out}}^{\pm} = \pm r_H e^{\pm x_{\text{out}}^{\pm}/2r_H}$$
 $x_{\text{out}}^{\pm} = \pm 2r_H \log(\pm X^{\pm}/r_H)$

$$\begin{aligned} \alpha_{\Omega;\omega}^{\text{out}} &= \left(U_{\Omega}, v_{w}^{\text{out}}\right) \sim \int_{-\infty}^{0} dX^{-} e^{-i\Omega X^{-}} e^{-i\omega \cdot 2r_{H} \log\left(-X^{-}/r_{H}\right)} \\ \beta_{\Omega;\omega}^{\text{out}} &= \left(U_{\Omega}^{*}, v_{w}^{\text{out}}\right) \sim \int_{-\infty}^{0} dX^{-} e^{i\Omega X^{-}} e^{-i\omega \cdot 2r_{H} \log\left(-X^{-}/r_{H}\right)} \\ &= -\int_{-\infty}^{0} dZ \ e^{-i\Omega Z} e^{-i\omega \cdot 2r_{H} \log\left(Z/r_{H}\right)} \\ &= -\int_{-\infty}^{0} dZ \ e^{-i\Omega Z} e^{-i\omega \cdot 2r_{H} \log\left(Z/r_{H}\right)} \\ &= -e^{-2\pi r_{H}\omega} \int_{-\infty}^{0} dZ \ e^{-i\Omega Z} e^{-i\omega \cdot 2r_{H} \log\left(-Z/r_{H}\right)} \\ &= -e^{-4\pi GMw} \alpha_{\Omega;\omega}^{\text{out}} \end{aligned}$$

as we have to do an analytic continuation in the lower half plane



$$X_{\text{out}}^{\pm} = \pm r_H e^{\pm x_{\text{out}}^{\pm}/2r_H} \qquad x^{\pm} = t \pm r_*$$



$$X_{\text{out}}^{\pm} = \pm r_{H}e^{\pm x_{\text{out}}^{\pm}/2r_{H}} \qquad x^{\pm} = t \pm r_{*}$$

$$\langle N_{w}^{\text{out}} \rangle_{X^{-}} = \sum_{\Omega} \beta_{\Omega,\omega}^{\text{out}*} \beta_{\Omega,\omega}^{\text{out}} = \frac{1}{e^{8\pi GMw} - 1}$$

$$\sim \text{bosonic thermal radiation}$$
at temperature
$$T_{\text{BH}} = \frac{1}{8\pi GM}$$

$$X_{\text{out}}^{\pm} = \pm r_{H}e^{\pm x_{\text{out}}^{\pm}/2r_{H}} \qquad x^{\pm} = t \pm r_{*}$$

$$\langle N_{w}^{\text{out}} \rangle_{X^{-}} = \sum_{\Omega} \beta_{\Omega,\omega}^{\text{out}*} \beta_{\Omega,\omega}^{\text{out}} = \frac{1}{e^{8\pi GMw} - 1}$$

$$\sim \text{bosonic thermal radiation}$$
out of a pure quantum state
$$|0\rangle_{X^{-}} = \sum_{\vec{n}} \frac{1}{\sqrt{e^{8\pi GMw_{\vec{n}}} - 1}} |\vec{n}\rangle_{x^{-}}^{\text{in}} \otimes |\vec{n}\rangle_{x^{-}}^{\text{out}}$$
perfectly entangled pure quantum state

$$X_{\text{out}}^{\pm} = \pm r_{H} e^{\pm x_{\text{out}}^{\pm}/2r_{H}} \qquad x^{\pm} = t \pm r_{*}$$

$$\langle N_{w}^{\text{out}} \rangle_{X^{-}} = \sum_{\Omega} \beta_{\Omega,\omega}^{\text{out}*} \beta_{\Omega,\omega}^{\text{out}} = \frac{1}{e^{8\pi GMw} - 1}$$

$$\sim \text{bosonic thermal radiation}$$
out of a pure quantum state
$$|0\rangle_{X^{-}} = \sum_{\vec{n}} \frac{1}{\sqrt{e^{8\pi GMw_{\vec{n}}} - 1}} |\vec{n}\rangle_{x^{-}}^{\text{in}} \otimes |\vec{n}\rangle_{x^{-}}^{\text{out}}$$

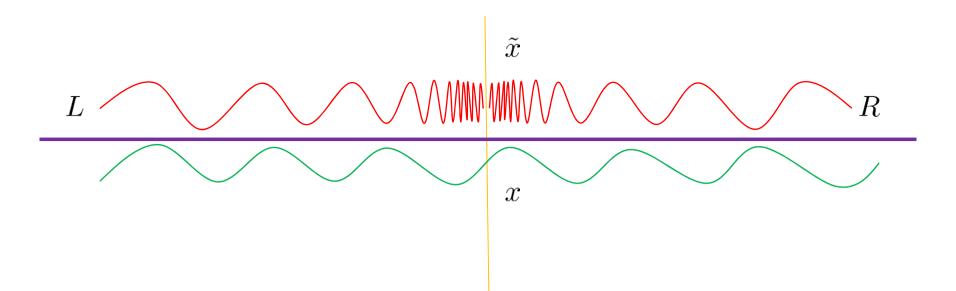
$$perfectly \text{ entangled pure quantum state}$$

$$\Rightarrow \text{ fully mixed, thermal state after partial trace}$$

$$\text{Tr}_{\text{in}} |0\rangle \langle 0|_{X^{-}} = \sum_{\vec{n}} \frac{1}{e^{8\pi GMw_{\vec{n}}} - 1} |\vec{n}\rangle_{x^{-}}^{\text{out}} \langle \vec{n}|_{x^{-}}^{\text{out}}$$

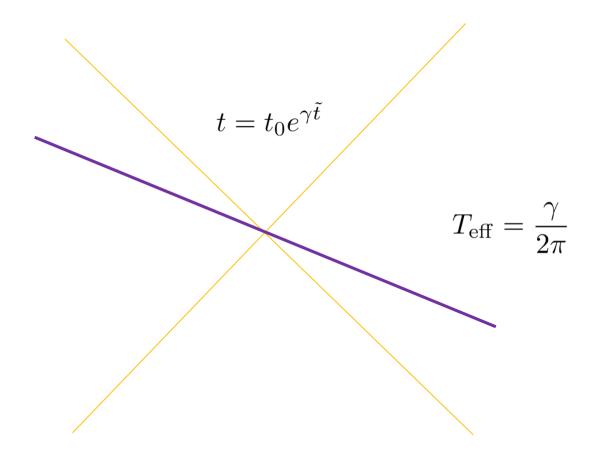
fully mixed state from a perfect quantum entanglement

$$|0\rangle_{\text{Total}} = \sum_{\vec{n}} a(\vec{n}) |\vec{n}\rangle_{\text{L}} \otimes |\vec{n}\rangle_{\text{R}}$$
$$\rho|_{\text{R}} = \text{Tr}_{\text{L}}|0\rangle\langle 0|_{\text{Total}} = \sum_{\vec{n}} |a(\vec{n})|^2 |\vec{n}\rangle_{\text{R}}\langle \vec{n}|_{\text{R}}$$



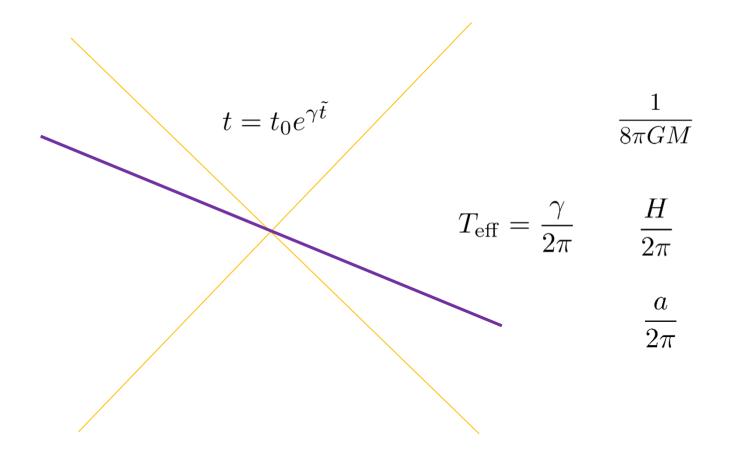
which happens whenever there is an event horizon

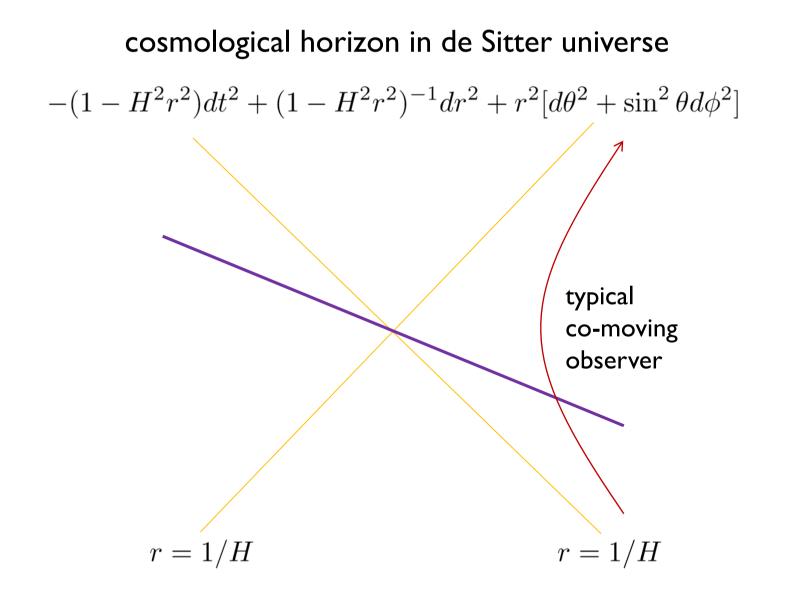
with thermal spectra whenever two coordinates are related via exponential

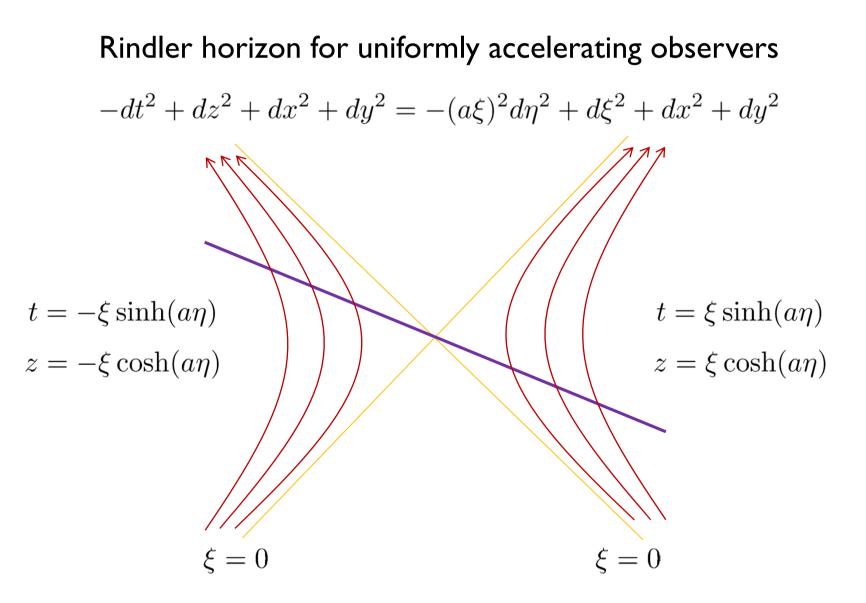


with thermal spectra

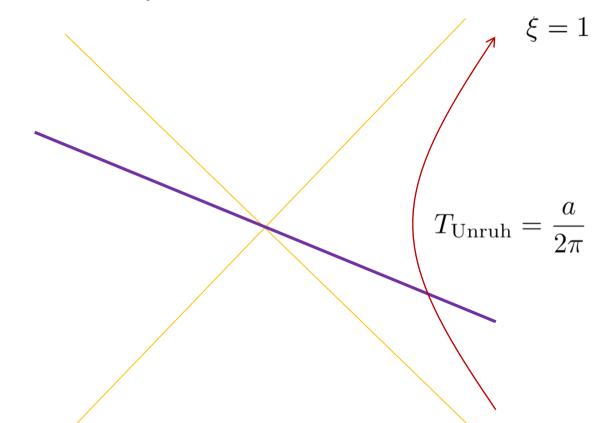
whenever the time coordinates are related via exponential





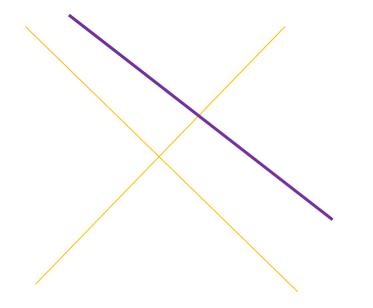


the Unruh temperature is a little more subtle as each Rindler wedge has no obvious asymptotic frame; the Unruh temperature refers to the observer at

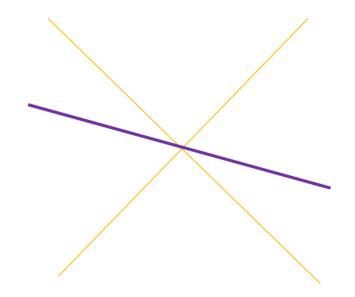


more generally, the same formula works for other accelerated observers if a is replaced by her own acceleration

radiative vs. thermal equilibrium



radiation vacuum



Hartle-Hawking vacuum for BH; Bunch-Davies vacuum for de Sitter; Unruh vacuum for Rindler wedges