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Equivariant Volume & Localization 

Part I 



Why do we care ? 

[1] Nekrasov Instanton Partition Functions and Seiberg-Witten Theories 

 

[2] Volume of Sasaki-Einstein Manifolds and AdS/CFT correspondence 



What measures # of degrees of freedom that decreases monotonically along  

the renormalization group flow ? 

Long-Standing Problem 

Renormalization 101 

• Describe a system by microscopic d.o.f and their interactions 
 

• Zoom out, or coarse grain: average out “heavy modes” that      

  are irrelevant to long-distance physics 
 

• At each typical energy scale, the d.o.f describing the same 

  system may look very different to each other 
 

• This procedure of zooming out and ignoring the small irrelevant 

  details is known as Renormalization Group (RG) flow 

Question 



A Little History 

We know the answer in 2 dimensions due to the work of Zamoldchikov [86] 

• One can define a real number c for any 2d QFTs, even for  

  strongly interacting system, from 2-point function of energy-   

  momentum tensor 
 

• He has shown that this number always decrease monotonically  

  along RG flow,  

 
 

• It counts # of d.o.f, generalizing the notion of counting in free  

  theory 

 “ Irreversibility of Renormalization Group Flow ! ” 



[1] Similar measure in higher dimensions ? 

 

[2] Counterpart in the bulk geometry via AdS/CFT correspondence 

Two Questions Arise   



In 4D, it has been conjecture by John Cardy soon after Zamoldchikov’s work  

Higher Dimensions 

• One can easily generalize the definition of c-function in 2D to  

  4 dimensions, known as a-function  

 

• Conjecture  

 

A proof is recently proposed by Komargodski and Schwimmer [11] 

What about three dimensions ? 
 

Not even clue until very recently. This is because the definition of  
 

c- and  a-function cannot be generalized to any odd dimensions  



Higher Dimensions 

Answer turns out to be S3 partition function  
 

More precisely, defining                               ,   

[Jafferis] 

[Jafferis,Klebanov,Pufu,Safdi] 

[Closset,Dumitrescu,Festuccia, 

 Komargodski,Seiberg] 

I may have a chance to introduce this story a little bit on Saturday… 



D3s or M2s 

CY3/CY4 

SE5/SE7 

NB  AdS5(4)/CFT4(3) : a(F)-maximization vs Vol[SE5(7)]-minimization 

AdS/CFT & Volume Minimization 

Equivariant Volume & Localization Method play a key role 























SUSY condition 



Around N-pole, S2 ~ R2 
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HW: work out the one-loop determinant around these  

        two fixed points and see if one can get the same answer  



Quotient with Non-abelian group  

Adjoint Representation 





SUSY Action 



SUSY Transformation Rules 















Nekrasov Partition Function 

Result: 

. Volume can be computed by Gaussian path-integrals over a set of saddle-points  

(solutions of deformed ADHM), characterized by N-colored Young diagrams 

where 

[Nekrasov] 



Exact S2 Partition Function 

Part II 



• Many intriguing phenomena in quantum field theory and string theory 
 

  e.g.  -  Quark confinement in QCD     
 

           -  M-theory: unified framework for quantum gravity 

                              inherently strongly interacting  

                              string theories in weak-coupling limits   

 

          -  Non-fermi liquid, High Tc superconductor, and so on 

 

• These systems are far beyond the perturbative regime   

Particles (or strings) that do strongly interact with each other  

Hard Problems in Theoretical Physics 



How to Study Strong Dynamics 

In theoretical physics, there are three different methods   

1. DUALITY 

Gauge/Gravity duality (a.k.a. holography) leads to  

a number of novel predictions on strong dynamics 
 

Strong Gauge Dynamics = Classical Einstein Gravity  

2. SUPERSYMMETRY 

3. INTEGRABILITY 

Complementary strategy to attack strong coupling problem  

So powerful! But rare in quantum field theories 



• Exactly computable observables in SUSY theories in the past [’80-’90] 

  

• They know the vacuum dynamics only, or are relevant to math 
 

  e.g.    -  Witten Index : Vacuum  

            -  Topological Invariants: Math  

            -  Affleck-Dine-Seiberg superpotential: Vacuum  

            -  Seiberg-Witten solution: limited to 4d N=2 theories  

How to Study Strong Dynamics 
A New Technique: Exact Result 

Supersymmetry: 



Question: 

“ Can we find an exactly computable observable in SUSY theories? ” 

• Wide application to any SUSY theories 
 

• Relevance to physics beyond the vacuum dynamics 
 

• Remarkable progress recently (including my own), using SUSY localization  

  techniques 

How to Study Strong Dynamics 
A New Technique: Exact Result 



Start with a following path-integral 

 

 

    -           : action of a theory we want to study 

    -  The term V is invariant under J, 

 

Localization 

Semi-Classical 

Easy to evaluate 

(Gaussian Integral) 

Quantum 

Hard to evaluate 

= 

Supersymmetry tells us  



RESULT 

 

 

 

 

where f* satisfy (1) equation of motion of the deformed theory 

                              (2) supersymmetric condition  

For BPS operators                         ,  

Localization 



• Not Nilpotent supercharge, but                 

• J generates an isometry of (compact) space 

• No topological twisting needed ! 

•    new observable telling us about something beyond the vacuum 

Old vs New  

• Nilpotent supercharge  

• Topological twisting needed 

• Full Hilbert space is projected down to the subspace “topological Hilbert space”   

80s-90s: constant spinor  

Recent : Killing spinor 



Recent Developments  

New Physical Observables:  

S4 : [Pestun] 

S3 : [Kapustin,Willet,Yaakov] 

       [Jafferis]  

       [Hama,Hosomichi,S.L] 

 

 

S2 : This is what I want to discuss today ! 

S3 x S1: [Romelsberger] 

S2 x S1: [Kim] 

              [Imamura,Yokohama] 

 

Sphere-Partition Function                        Superconformal Index 

We learned AGT correspondence, F-theorem, Test of Dualities and so on 



 New Exact Results in 2d SUSY Theories 

• SUSY Lagrangian on Two-Sphere 

• Exact Two-Sphere Partition Function 



N=(2,2) SUSY on S2 

SUSY on Two-Sphere: SU(2|1)  

• Subalgebra of N=(2,2) SCA:  



N=(2,2) SUSY on S2 

SUSY on Two-Sphere: SU(2|1)  

• Subalgebra of N=(2,2) SCA 

 

• Bosonic subalgebra:  
 

    - SU(2): rotational symmetry of S2 
 

    - U(1): vector U(1) R-symmetry 
   

  NB: axial U(1) R-symmetry is broken unless the theory is conformal 

 

• Parametrized by Killing spinors            satisfying 

 

 

 

 



N=(2,2) SUSY on S2 

SUSY on Two-Sphere: SU(2|1)  

• Parametrized by Killing spinors            satisfying 

 

 

 

 
 

Solutions of Killing spinor equations are given by  

 

 

 

 

two-component  

constant spinors 

2 

2 



• Vector multiplet, 

 

 
 

• (charged) Chiral multiplet of U(1)R charge q,   

 
 

 

 

• Twisted chiral multiplet, 

 

 

 

 

   D: free parameter 

SUSY Rep. in Field Theories:          - correction in SUSY transf. rules,  

N=(2,2) SUSY on S2 



SUSY Rep. in Field Theories:  

 

 

 

 

 

 

[1] SU(2) rotation  

 

 
 

[2] U(1)R rotation 

 

 
 

[3] Gauge rotation          

N=(2,2) SUSY on S2 

Lorentz transf. 

acting on fermions 



• Kinetic Lagrangians for 
 

[1] Vector multiplet :  
 

 

 

[2] Chiral multiplet of U(1)R charge q :  

 

 

 

 

[3] Twisted chiral multiplet :  

SUSY Lagrangian on S2: up to           - corrections  

N=(2,2) SUSY on S2 



SUSY Lagrangian on S2: up to           - corrections  

N=(2,2) SUSY on S2 

• Superpotential             : possible if q[W] = 2  ( q : U(1)R charge ) 

 

 

  

 

  NB: SUSY on S2 should contain a conserved U(1)R charge  
 

 

• Twisted Superpotential               ( twisted chiral multiplet                 ) 

 

 

 

 e.g.  



Localize the Path-Integral 

Strategy:  Localization Principle 

 

  -  Choice of Supercharge Q and Q-exact Deformation Terms 

 

  -  SUSY Saddle Point Configurations  

 

  -  Integration along the Directions Transverse to Saddle Point Locus, Gaussian  

     Approximation Becomes Exact 



J 

Exact Partition Function 

Localization Scheme 

• Choice of supercharge : 

S 

N 

fixed pts 



Exact Partition Function 

Localization Scheme 

• Q-exact deformation : Given the above choice, 

 

 

 

 

  e.g.  

Kinetic Lagrangians: Q-exact deformations Superpotential 

Vv.m. 

Vc.m. 



Decoupling Theorem: S2 partition function is independent of 
  

   (1) Gauge coupling constant : tell us about the physics at infrared  
 

   (2) Parameters in superpotential 

Localization Scheme 

• Q-exact deformation : Given the above choice, 

 

 

 

 

Kinetic Lagrangians: Q-exact deformations Superpotential 

Exact Partition Function 



Exact Partition Function 

Gauged Linear Sigma Model (GLSM)  

 

N=(2,2) gauge theory with gauge group G, coupled to chiral multiplets of U(1)R  
 

charge q in rep. R  
  

• SUSY saddle point configurations = Columb branch vacua 

 

 

 

 

 

  and all other fields vanish   

GNO  

Quantized 



Exact Partition Function 

Gauged Linear Sigma Model (GLSM) 

• One-loop determinant 
 

  -  Chiral multiplet in rep. R : Expand Sdef to quadratic order in the fluctuation  

     fields 

Monopole  

background 



Exact Partition Function 

Gauged Linear Sigma Model (GLSM) 

• One-loop determinant 
 

  -  Chiral multiplet in rep. R :  

Huge Cancellation between B and F Eigenvalues Occurs ! 



Exact Partition Function 

Gauged Linear Sigma Model (GLSM) 

• One-loop determinant 
 

  -  Chiral multiplet of weight r :  

[1] Still left with infinite number of unpaired eigen modes 

[2] Index Theorem for Transversally Elliptic Operators  

[3] It is obviously divergent !  



• UV divergence in sphere-partition function 

 

 

 

 
 

    - Power divergence: cured by local counter terms  

 

    - Log divergence: reflects trace anomaly and c denotes central charge.   

Gauged Linear Sigma Model (GLSM) 

Exact Partition Function 

L : cut-off scale 

“ universal ” 



Exact Partition Function 

Gauged Linear Sigma Model (GLSM) 

• One-loop determinant 
 

  -  Chiral multiplet of weight r :  

[1] [2] 

[1] Central charge 
 

[2] One-loop correction to FI parameter 

L : cut-off scale 



Exact Partition Function 

Gauge Linear Sigma Model (GLSM) q : theta angle x : FI parameter 

r : rank of G W : Weyl group 
• Result:   

 

 

 

 

- (regularized) One-loop determinant : 

 

 

 

- Central charge :  

chiral multiplets vector multiplet 



Index Theorem 

Cohomological Basis :  
 

e.g. chiral multiplet 

2 4 2 

:  2 B 

:  2 B 

:  2 F 

:  2 F 

Let’s compute the one-loop determinant in a “ fancy ” way !  



Index Theorem Index Theorem 

Cohomological Basis : :  B 

:  B 

:  F 

:  F 

In the above basis, the deformed Lagrangian can be written as follows :  

 

 



Index Theorem 

One-loop determinant  can be written as  

 

 

 

 

Can read off from the index of the differential operator D10   

 

 

 

NB The differential operator D10  is a transversally elliptic 



J 

S 

N 

Index Theorem 

Atiyah-Bott Localization Formula 

 

 

 

 
 

  -  Fixed points x
* 

:  

 

  -  Operator H :   H 



Index Theorem 

Atiyah-Bott Localization Formula  

Near N pole, 
  

[1]    



Index Theorem 

Atiyah-Bott Localization Formula  

Near N pole, 
  

[2]    



Index Theorem 

Atiyah-Bott Localization Formula  

Near N pole, 
  

[3]    



Index Theorem 

Atiyah-Bott Localization Formula  

Near N pole, let’s collecting all the results,    

Bosonic Eigenvalue of H 



Index Theorem 

Atiyah-Bott Localization Formula  

Near S pole, one can obtain    

Fermionic Eigenvalue of H 



Index Theorem 

One-Loop Determinant 



Higgs Branch Representation 

Factorization of S2 partition function : 2d N=(2,2) U(1) gauge theory 

 

 

 

 

 

 

 
 

If xren  does not vanish, the matrix integral over the Coulomb branch can be 

evaluated by residues. Let us assume that xren > 0 

simple poles  



Factorization of S2 partition function :  

G=U(1) with NF chiral multiplets of charge +1 and NF chiral multiplets of charge -1 

 

 

 

 

 

 

[1]  Sum over isolated vacua (=Higgs branch roots) in the Higgs branch 

[2]  Factorization occurs !  

[3]  Vortex partition function (= 2d counterpart of Nekrasov’s partition function) 

Higgs Branch Representation 



Factorization of S2 partition function :  

G=U(1) with NF chiral multiplets of charge +1 and NF chiral multiplets of charge -1 

 

 

 

 

 

 

 

[1]  Sum over isolated vacua (=Higgs branch roots) in the Higgs branch 

 

Higgs Branch Representation 

s + ma = 0 ( a = 1,2,..,NF)  



Factorization of S2 partition function :  

G=U(1) with NF chiral multiplets of charge +1 and NF chiral multiplets of charge -1 

 

 

                                                         

 

 

 

 

[2]  Factorization occurs !  

[3]  Vortex partition function (= 2d counterpart of Nekrasov’s partition function) 

Higgs Branch Representation 

- Choosing a different Q-exact def. can localize  

   the path-integral onto isolated Higgs vacua  

 

-  New SUSY saddle point configurations :   
 

   point-like (anti-) vortex at NP (SP) in omega    

   background 



x 

Phase of GLSM 

q q  =  0  

Quantum Effect 
x = 0 

Due to the quantum correction, physics with xren > 0 can be analytically continued  

to physics with xren < 0 , if q is non-zero  [Flop Transition]  



Factorization of S2 partition function :  

G=U(1) with NF chiral multiplets of charge +1 and NF chiral multiplets of charge -1 

 

 

 

 

 

 

 
 

[1] Vortex partition function Fp(z) is analytic across x = 0 , if q  is non-zero ! 

 

Higgs Branch Representation 



• Toda correlator with degenerate operator vs SQED2 coupled to Nf flavors 

 

 

 

 

 

 

 

 

 

Gauge/Toda Duality 

Decoupling Limit of AGT Relation with surface operator 

= 

= Crossing Symmetry Flop Transition 

[Witten]  [Fateev,Litvinov]  



Exact Partition Function 

Landau-Ginzburg (LG) Model, which involves   

Twisted chiral multiplets Y coupled by twisted superpotential W(Y) 

• SUSY saddle points :  Y = const. over S2 and all other fields vanish  

 

• One-loop determinant : trivial in a sense that it is independent of Y  

 

• Result 



N=(2,2) SCA at IR Fixed Points 

Global part of N=(2,2) SCA 



Appendix 

Restoration of Axial U(1)R Symmetry at IR fixed point 
 

There is a one-parameter family of SUSY theories on S2, T[q], related by axial 

U(1)R rotation at UV 

 

However, S2 partition functions of T[q] are all the same !  

 

This result confirms in the S2 partition function framework that the axial U(1)R 

symmetry is restored at IR! 



Application to String Theory 

Part III 



What are we probing ? 

The most useful method in physics is to throw something at an object we want to  

understand 

• Today we are probing “geometrical space”  
 

• With “quantum string” 



What about quantum string then ? New Maths ? 

de Rham  

Cohomology 
(Supersymmetric)  

Ground States 

Why are we probing ? 

    Physics: 

Mathematics: the spectrum of quantum particle with spin solves many important 
 

mathematical problems of classical geometry   

Attempts to get a sensible 4-dimensional model, relevant to nature, from  
 

10-dimensional string theory on small 6-dimensional space 

Many physical observables (e.g. Yukawa coupling) in 4d theories are 

determined by how strings see the given 6-dimensional space.  

e.g.  
= 



2. They are happy in a space with                 , known as “Calabi-Yau manifold”  

What did we learn ? 

1. Strings want to change the given geometry until they become happy,  

3. There are quantum corrections to classical geometry, suppressed by string size ls , 

Can deform it in two different ways  

arising from point-particle approximation of string 

• change of size: Kahler moduli 

• change of shape: Complex structure moduli 



2. Calabi-Yau space (I             )  is a fixed point of RG flow. 
 

    Kahler/Complex Structure moduli can define a “space of RG-fixed points”   

2-Dimensional Theories 

String which probes the six-dimensional Calabi-Yau space can be studied by 
 

2-dimensional theories. (world-sheet theory) 

1.                               : nothing but the renormalization group (RG) flow 

It is important to know the metric on the space of RG-fixed points 

3. Most Challenging Problem  
 

    How to compute quantum corrections to the metric on the space of RG-fixed points ? 

A solution is the celebrated Mirror Symmetry 



However, there are not many known examples (well       , but still not big enough) 

Mirror Symmetry 

Calabi-Yau manifolds come in pairs. Strings see the two manifolds as the same,   
 

although mathematician saw them differently 

Kahler Moduli: 

change of size 
Complex structure Moduli:  

change of shape 

Quantum (Hard) Classical (Easy) 

= 



The exact S2 partition function provides a direct and powerful method to compute both 

perturbative and nonperturbative quantum corrections without use of mirror symmetry   

Recent Progress: A New Method 

• Exact Kahler potential K encodes all quantum corrections to the metric on the space  

  of RG-fixed points of 2D theories 

 

• K also defines a new math: Gromov-Witten Invariant (Quantum Cohomology)  

 

• ZS2 is independent of complex structure moduli of CY3 (= parameters in superpotential) 



The exact S2 partition function provides a direct and powerful method to compute both 

perturbative and nonperturbative quantum corrections without use of mirror symmetry   

Recent Progress: A New Method 

• K also defines a new math: Gromov-Witten Invariant (Quantum Cohomology)  

     ta: flat coordinate      

     Nb: GW-invariant 

Works for many known examples, for instance, a famous Quintic Threefold   

 2875,  609250, 317206375, 242467530000, …  



Examples 

Predicts new results of GW invariants  

for CY3’s whose mirrors are unknown ! 



Why does this formula work ? 



New Solution 

Proof I (Warm-up)   [Gomis,S.L]    

LG theories with twisted superpotential W(Y), which describe N=(2,2) SCFTs  

=
 [Cecotti] 



| | 

[1] SUSY theory on squashed two-sphere       :         

      -  Need a background gauge field V for U(1)R Symmetry 

      -  Partition function on      : independent of squashing parameter b  

New Solution 

Sketch of Proof II   [Gomis,S.L]  

[2] Infinite squashing limit 

= = = 
[1] [2] tt* eqn 



Mirror Symmetry 

Hori-Vafa Method: Abelian GLSM vs Landau-Ginzburg model 

Examples 

• T-duality (scalar-scalar duality) 

 

    

  NB: Chiral multiplet F             Twisted chiral multiplets Y 

  

• Nonperturbative effect: dynamically generation of (ADS-type) twisted superpotential W 

• Non-compact toric Calabi-Yau:   

 GLSM: G=U(1), n chiral multiplets of charge Qa (a=1,2,..,n) 
 

 LG: n twisted chiral multiplets Y=Y+2pi with  



Mirror Symmetry Revisited 

Non-compact toric CY3 

 GLSM: G=U(1), n chiral multiplets of charge Qa (a=1,2,..,n) with 

 LG: n twisted chiral multiplets Y=Y+2pi with  

=
 



 GLSM: G=U(1), n chiral multiplets of charge Qa and U(1)R charge qa with  

              superpotential W 
 

 LG: n twisted chiral multiplets Y=Y+2pi with the same twisted superpotential W  

Mirror Symmetry Revisited 

Compact CY3 : Complete intersection in toric variety 

Subtlety in choosing fundamental variables of mirror LG models  

However, S2 partition function can resolve the subtlety automatically !  



Mirror Symmetry Revisited 

Fundamental  

LG variables 

=
 

 GLSM: G=U(1), n chiral multiplets of charge Qa and U(1)R charge qa 

 LG: n twisted chiral multiplets with the same twisted superpotential W  



New Idea in Mirror Symmetry 

Mirror beyond toric ? [Hori,Vafa] method (due to T-duality) cannot extend to   

2D non-abelian GLSM describing CY3 beyond toric variety 
 

   e.g.   G=U(N) with chiral multiplets in rep. R 

S2 partition function of 2d non-abelian GLSM can be computed exactly 

Nontrivial evidence of  

Hori-Vafa conjecture ! 

Same as the S2 partition function of a following Landau-Ginzburg model 

Complete-intersection in  

Grassmannian mfd. 



N=(2,2) SUSY on S2 

SUSY on Two-Sphere: SU(2|1)  

• Subalgebra of N=(2,2) SCA:  


