SUSY and Localization

SUNGJAY LEE UNIVERSITY OF CHICAGO

PSI 2013, Pyeong-Chang

July 10th, 2013

Part I

Equivariant Volume & Localization

Why do we care ?

[1] Nekrasov Instanton Partition Functions and Seiberg-Witten Theories

[2] Volume of Sasaki-Einstein Manifolds and AdS/CFT correspondence

Long-Standing Problem

Question

What measures **# of degrees of freedom** that decreases monotonically along the renormalization group flow ?

Renormalization 101

• Describe a system by microscopic d.o.f and their interactions

- Zoom out, or coarse grain: average out "heavy modes" that are irrelevant to long-distance physics
- At each typical energy scale, the d.o.f describing the same system may look very different to each other
- This procedure of zooming out and ignoring the small irrelevant details is known as Renormalization Group (RG) flow

A Little History

We know the answer in 2 dimensions due to the work of Zamoldchikov [86]

- One can define a real number c for any 2d QFTs, even for strongly interacting system, from 2-point function of energymomentum tensor
- He has shown that this number always decrease monotonically along RG flow,

$$C_{\rm UV} > C_{\rm IR}$$

 It counts # of d.o.f, generalizing the notion of counting in free theory

 \Rightarrow "Irreversibility of Renormalization Group Flow ! "

Two Questions Arise

[1] Similar measure in higher dimensions ?

[2] Counterpart in the bulk geometry via AdS/CFT correspondence

Higher Dimensions

In 4D, it has been conjecture by John Cardy soon after Zamoldchikov's work

 One can easily generalize the definition of c-function in 2D to 4 dimensions, known as a-function

Conjecture

 $a_{\rm UV} > a_{\rm IR}$

A proof is recently proposed by Komargodski and Schwimmer [11]

What about three dimensions ?

Not even clue until very recently. This is because the definition of c- and a-function cannot be generalized to any odd dimensions

Higher Dimensions

Answer turns out to be S³ partition function More precisely, defining $F_{S^3} = -\log Z_{S^3}$,

$$F_{\rm UV} > F_{\rm IR}$$

[Jafferis] [Jafferis,Klebanov,Pufu,Safdi] [Closset,Dumitrescu,Festuccia, Komargodski,Seiberg]

I may have a chance to introduce this story a little bit on Saturday...

AdS/CFT & Volume Minimization

NB AdS₅₍₄₎/CFT₄₍₃₎: a(F)-maximization vs Vol[SE₅₍₇₎]-minimization

Equivariant Volume & Localization Method play a key role

SYMPLECTIC MANIFOLD (X, w)

• dim [X] = 2n

 $\omega = \frac{1}{2} \omega_{\mu\nu} dx^{\mu} dx^{\nu}, symplectiz 2-form satusfying " dw = 0"$

SYMPLECTIC VOLUME

 $\frac{1}{n!}\omega^n$ · Volume form is defined as

 $\operatorname{Vol}(X) = \int_X \frac{1}{n!} \omega^n = \int_X e^{\omega}$

$$\frac{SYMPLECTIC}{VOLUME} \rightarrow i.e., symplectiz mfd.?$$
• Example: Kähler manifold (= a complex mfd. w/ a closed 2-form)
- metric $de^{2} = g_{ab} d\overline{z}^{a} d\overline{z}^{b}$
- Kähler 2-form $W = -\frac{i}{2} g_{ab} d\overline{z}^{a} \wedge d\overline{z}^{b}$ & $dW = 0$
- symplectiz volume
$$Val(X) = \int_{X} \frac{1}{n!} (-\frac{i}{2})^{n} g_{a:b} \cdots g_{anb} \left[e^{a_{1} \cdots a_{n}} e^{b_{1} \cdots b_{n}} \right] d\overline{z}^{i} d\overline{z}^{n} d\overline{z}^{n}$$

$$= \int_{X} \sqrt{det} G \qquad G: metric on X$$

<u>NB</u> SYMPLECTIC VOLUME = CANONICAL VOLUME for Kähler mfd.

SUPERSPACE & SUPERSYMMETRY

- Superspace T[1]X = (x^{r}, ψ^{r}) where x^{n} : coordinates of X ψ^{r} : Grassmanian Variable function $f(\alpha, 2)$ on $T[I]X = pace of differential form <math>\Omega^*(X)$ $f(\alpha,\gamma) = f^{(o)}(\alpha) + f^{(i)}_{\mu}(\alpha)\gamma^{\mu} + \cdots + \frac{1}{n!}f^{(m)}_{\mu,\cdots,\mu_{m}}(\alpha)\gamma^{\mu}\cdots\gamma^{\mu_{m}}$ $\int_{TEIIX} [dXdy] - f(x,y) = \int_{X} [dX^{r}] \frac{1}{n!} f_{\mu_{1}\cdots\mu_{n}}^{(n)}(x) \in \mu_{1}\cdots\mu_{n} = \int_{X} -f^{(m)}(x)$ - INTEGRATION

 $- \omega = \frac{1}{2} \omega_{\mu\nu} \psi^{\mu} \psi^{\nu} \text{ is invariant inder}$

$$SX^r = \psi r \qquad S\psi r = 0$$

- · S* = o ... nilpotent!
- Supercharge $Q \doteq \Psi^{\mu} \partial_{\mu} \doteq d \infty^{\mu} \partial_{\mu} = d$ (exterior derivative)
- · [dx*][dy*] ie obviously an invariant measure under SUST transf. rule

• $\delta \omega = \frac{1}{2} \partial_{\rho} \omega_{\mu\nu} \delta X^{\rho} \psi^{\mu} \psi^{\nu} + \omega_{\mu\nu} \delta \psi^{\mu} \psi^{\nu} = \frac{1}{2} \partial_{\rho} \omega_{\mu\nu} \psi^{\mu} \psi^{\nu} = 0 ! (:: d\omega = 0)$

- Adding a Q-exact term doesn't affect the volume integral

$$I[t] = \int [dx^{r}][dy^{r}] e^{\omega + ts\nu} \qquad I[o] = vol(\chi)$$

$$\frac{PROOF}{dt}$$

$$\frac{d}{dt}I[t] = \int [dx^{n}][d\psi^{n}] \delta \mathcal{Y} e^{\omega + t\delta \mathcal{Y}} = \int [dx^{n}][d\psi^{n}] \delta [\mathcal{Y} e^{\omega + t\delta \mathcal{Y}}]$$

- This implies that $I[\infty] = Vol(X)$

BUT. it is not helpful ! :: SV doeen't contain my boxonic terms

EQUIVARANT VOLUME

•
$$\mathcal{L}_{v}\omega = [di_{v} + i_{v}d]\omega = dH = 0$$

NB In many physical systems (e.g.
$$QM$$
 with -baget space X)

$$V^{\mu} \cong global$$
 symmetry

- DEFORM THE SUSY !

$$S_{\epsilon} X^{r} = \Psi^{r} \qquad S_{\epsilon} \Psi^{r} = \epsilon V^{r} (\vec{x})$$

• Then, one can show that $S_{\epsilon}^* X^r = \epsilon V^r \quad S_{\epsilon}^* \Psi^r = \epsilon \partial_r V^r \Psi^r$

$$S_{e} = \mathcal{L}_{v} (= d i_{v} + i_{v} d)$$

$$Vol_{\epsilon}[X] = \int e^{\omega - \epsilon H}$$
, where $dH = i_{\nu}\omega$

Note that $\delta_{\epsilon}[\omega - \epsilon H] = o! \int \delta_{\epsilon} \omega = \epsilon \omega_{\mu\nu} V^{\mu} \psi^{\nu} = \partial_{\nu} H \cdot \psi^{\nu}$

Se H

Example S

$\omega = d\theta^{sind}\phi \quad V = \partial_{q} \quad i_{v}\omega = + d\cos\theta \rightarrow H = \cos\theta$

Then,

$$Vol_{\epsilon}[S^{*}] = \int_{TUS^{*}} e^{\omega - \epsilon H} (\omega = sin\theta \psi^{\theta} \psi^{\phi})$$

$$= \int d\theta \, d\phi \, \sin \theta \, e^{-\epsilon \cos \theta}$$
$$= \int_{-1}^{1} dx \cdot 2\pi \cdot e^{-\epsilon x} = \frac{2\pi}{\epsilon} \left[e^{\epsilon} - e^{-\epsilon} \right] = 4\pi \frac{\sinh \epsilon}{\epsilon}$$

 $i_v \omega = +\frac{1}{2}d(x^2 + y^2)$ W = dx^dy Example IR^{*} $\sqrt{=-\infty}\partial_y + y\partial_\infty$ $\Rightarrow H = +\frac{1}{2}(x^2 + y^2)$

$$Vol_{\epsilon}[\mathbb{R}^{2}] = \int_{\mathbb{R}^{2}} e^{\omega - \epsilon H} \quad \text{with} \quad \omega = \psi^{\times} \psi^{\times}$$
$$= \int_{\mathbb{R}^{2}} e^{-\frac{\epsilon}{2}(x^{2} + y^{2})} = \left(\int_{\epsilon}^{2\pi} \int_{\epsilon}^{\pi} = \frac{2\pi}{\epsilon}\right)$$

Equivariant volume of a non-compact space can be finite!

What are they good for ? [DH-formula]

· con use the localization techique

$$I_{\epsilon}[t] = \int_{TUX} e^{\omega - \epsilon H - t S \nu}$$

IF $\mathcal{V}(x,\psi)$ is invariant under \mathcal{Z}_{v} , $\underline{T}_{\epsilon}[t]$ is indep of t

Choose
$$\mathcal{V} = \mathcal{J}_{\mu\nu} \psi^{\mu} V^{\nu} \quad \delta \Psi^{\mu} = V^{\mu}$$

$$S_{def} = S \mathcal{V} = \frac{\mathcal{O}_{\mu\nu} \mathcal{V}^{\mu} \mathcal{V}^{\nu}}{\rightarrow posifive def}.$$

• TAKE A LIMIT t→∞,

$$\operatorname{Vol}_{\epsilon}[X] = \int_{TUIX} e^{\omega - \epsilon H - t \left[\frac{\epsilon g_{\mu\nu} V^{\mu} V^{\nu} + \dots \right]}{\epsilon S_{def}}}$$

[1] THE INTEGRAL LOCALIZES NEAR $\|V\| = o$! $\bigvee^{\mu}(\mathfrak{X}_{*}) = 0$ [2] SADDLE-POINT APPROXITION BECOMES EXACT $\delta \Psi^{\mu} = V^{\mu} = 0$ SUSY condition $\bigvee^{\mu} \cong \bigvee^{\mu}_{\rho}(\mathfrak{X}_{*})\mathfrak{X}^{\rho} + \cdots$

 $S_{def} = \epsilon g_{\mu\nu}(x_*) V^{\mu} V^{\nu}_{\mu} x^{\mu} x^{\mu} + g_{\mu\nu}(x_*) \mathcal{V}^{\mu} \mathcal{V}^{\rho} (x_*)$

$$vol_{\epsilon}[X] = \sum_{x^{*}} e^{-\epsilon H(x_{*})} \left[\frac{2\pi}{\epsilon}\right]^{n} \frac{\Pr\left[g_{\mu\nu}(x_{*})V_{e_{1}}^{\nu}\right]}{def^{*}\left[g_{\mu\nu}(x_{*})V_{e_{1}}^{\mu}V_{e_{1}}^{\nu}\right]}$$

EXAMPLE S' REVISITED! Vol(s2) = Store w- eH - Sauf $S_{def} = S_{\epsilon}[g_{ab}\psi^{a}V^{b}] = S_{\epsilon}[sin^{\epsilon}\theta\psi^{b}] = \epsilon Sin^{\epsilon}\theta + 2 Sin\theta \cos \psi^{\theta}\psi^{b}$ In the limit t→∞, the volume integral is localized onto D=O (N)& D=TL (S) \bigcirc Near $\Theta=0$ Around N-pole, S² ~ R² $S_{olef} = -t[\epsilon(x^2+y^2)-2\psi^2\psi^2]$ $x = 0 \cos \phi, y = 0 \sin \phi$ $\Rightarrow -e^{-\epsilon} \int dx dy dy x dy = e^{-\epsilon (x^2 + y^2) + 2y^2 + y^2}$ 4^x = cos φ 40 + y 4 ¢ $\psi = \sin \phi \psi - \chi \psi$ $= -\frac{2\pi}{\epsilon}e^{-\epsilon}$

(a) Near $\theta=\pi$, one can obtain $\frac{2\pi}{\epsilon}e^{+\epsilon}$ $\therefore V_0\lambda(S^{\bullet}) = \frac{4\pi}{\epsilon}\sinh\epsilon$

HARISH-CHANDRA-ITZYKSON-ZUBER [HCIZ] INTEGRAL

 $I(A,B) = \int d\mathcal{U} e^{-S[A,B;\mu]} \quad \text{with} \quad S[A,B;\mathcal{U}] = \text{tr}[A\mathcal{U}B\mathcal{U}^{+}]$ $\mathcal{U} : \text{unifary}$ $A = \text{diag}(a_{1},...,a_{m})$ $B = \text{diag}(b_{1},...,b_{m})$

Use the localization technique to show

 $I(A,B) \propto \frac{det(e^{-a_ib_j})}{\prod_{i < j} (a_i - a_j)(b_i - b_j)}$

This integral arises from Brownian motions Note that an integration domain $X = U(n)/U(1)^n$ > they don't notate B I. X in a Kähler monifold Mathematical Facts I. Coordinates (Z', \dots, Z^N) N = n(n-1)/2Kähler 2-form $W = \frac{1}{2} g_{ab} dz^{a} \wedge d\overline{z}^{b}$

Then, one can rewrite the HCIZ integral as follow

 $\mathcal{I}(A,\mathcal{B}) = \int_{\mathsf{T}[I]X} e^{-S[A,\mathcal{B};z] + \omega}$

Supersymmetry

- SUSY transf. rules $SZ^{a} = Y^{a}$ $SY^{a} = -2ig^{ab}\partial_{b}S$ $S\overline{Z}^{b} = \overline{Y}^{b}$ $S\overline{Y}^{b} = +2ig^{ab}\partial_{a}S$

- Under the above transf. rules, one can show S[A,B] - W is invariant $SS[A,B] = \partial_a SSZ^a + \partial_b SSZ^b = \partial_a S\Psi^a + \partial_b S\overline{\Psi}^b$ $SU = \frac{1}{2} g_{ab} S\Psi^a \overline{\Psi}^b - \frac{1}{2} g_{ab} \Psi^a S\overline{\Psi}^b + \frac{1}{2} \partial_c g_{ab} SZ^c \Psi^a \overline{\Psi}^b + \frac{1}{2} \partial_c g_{ab} SZ^c \Psi^a \overline{\Psi}^b$ $= \partial_b S \overline{\Psi}^b + \partial_a S\Psi^a$ $\Rightarrow S[S - W] = 0!$

$$\mathcal{Y} = i \partial_a S \mathcal{Y}^a - i \partial_b S \overline{\mathcal{Y}}^b$$

$$\frac{1}{2} \operatorname{positive def. \ boponic terms'}}{\operatorname{Sdef}} = \frac{1}{2} \partial_a S \partial_b S - 2i \partial_a \partial_b S \mathcal{Y}^a \overline{\mathcal{Y}}^b}$$

Suppose that
$$U_0 \in X = U(n)/U(1)^n$$
 satisfies the saddle pt. eqn., i.e.,
 $SS[U_0] = S[e^{ih}U_0] - S[U_0] = tr[AihU_0BU_0^+] - tr[AU_0BU_0^+ih]$
 $= tr[ih[U_0BU_0^+, A]] = 0!$
"Linear part"
 $U_0BU_0^+ \& A \text{ commute to each other !}$

Saddle pts: UBU, = diag (bpas..., bpars) where
$$p \in S_N$$
, permutation group.

- ONE-LOOP DETERMINANT

Fix a saddle pt. $U_{0} = id_{N}$ quadratic piece of S_{def} around U_{0} ; $U = e^{ih}$ where $h = \begin{bmatrix} 0 & y & i \\ y & 0 \end{bmatrix} \stackrel{i < j}{j}$

 $\begin{bmatrix} a \end{bmatrix} S^{a}S = \pi [AhBh] - \frac{1}{2}\pi [Ah^{a}B] - \frac{1}{2}\pi [ABh^{b}] \\ = \sum_{i \neq j} \left[a_{i}b_{j} + a_{j}b_{i} - a_{i}b_{i} - a_{j}b_{j} \right] y_{ij}\overline{y}_{ij} \\ = -(a_{i} - a_{j})(b_{i} - b_{j}) \end{bmatrix}$

$$[b] \quad g^{ab} \partial_a S \partial_b S = \sum_{i < j} (a_i - a_j) (b_i - b_j) \quad \forall_i J \quad \forall_i \forall$$

$$\partial_a \partial_b S \cdot \psi^a \overline{\psi} = -\sum_{i < j} (a_i - a_j) (b_i - b_j) \psi_{ij} \overline{\psi}_{ij}$$

$$[c] \quad S'[id] = \sum_{i} a_{i}b_{i}$$

$$det_{f}/det_{b} |_{i} = \prod_{i < \bar{j}} \frac{(a_{i} - a_{\bar{j}})(b_{i} - b_{\bar{j}})}{(a_{i} - a_{\bar{j}})^{2}(b_{i} - b_{\bar{j}})^{2}} = \prod_{i < \bar{j}} \frac{1}{(a_{\bar{i}} - a_{\bar{j}})(b_{\bar{i}} - b_{\bar{j}})}$$

[d] Sum over other saddle pts.

$$\Rightarrow I(AB) \propto \sum_{\substack{p \in S_N \\ p \in S_N \\ i < j}} \frac{\prod_{\substack{p \in S_N \\ i < j}} (a_i - a_j)(b_{pa_i} - b_{pa_i})}{\prod_{\substack{i < j}} (a_i - a_j)(b_i - b_j)}$$

In general, it is not easy to compute val [X]

O Suppose that the space X is embedded into a (flat) ambient spa M in a mice non

2 Can we compute Vale [X] in the ambient space M?

SYMPLECTIC QUOTIENT X = M // U(1)

On M, G generate U(1) rotation
$$\Rightarrow$$
 Hamiltonian-flow = moment map
 $iqw = d\mu$
[1] Define a level surface $\mu^{-1}(\xi) = \{x \in M \mid \mu(x) = \xi\}$
[2] $\mu^{-1}(\xi)$ is invariant under $U(1)$
 $\mu(\vec{x} + \vec{q}) = G^{\mu} \partial_{\mu} \mu = G^{\mu} G^{\nu} \omega_{\mu\nu} = 0$
[3] $\chi = \mu^{-1}(\xi)/U(1)$ (well-defined)
IN GLSM, $U(1) = gauge symmetry & \mu = D-term$

FORMULA $X = \mu^{-1}(\xi)/\mu(1)$

 $Vol_{\epsilon}[X] = \frac{1}{2\pi \sqrt{2} \left[u(1)\right]} \int_{T[1]M} \left[dx^{m} \right] \left[d\psi^{m} \right] \left[d\psi^{m$

- introduce an anxiliary variable of (Lagrangian multiplies)

- SUST Homsf. rules $SX^{M} = Y^{M}$ $SY^{M} = -i\phi V^{M}$ $S\phi = 0$

Then, one com show

 $S[\omega + i\phi\mu] = -i\phi\omega_{\mu\nu}V^{\mu}\psi^{\nu} + i\phi\partial_{\nu}\mu\psi^{\nu} = 0$

 $\Rightarrow Vol_{\epsilon}[X]$ is invariant under SUSY !

$$\frac{Proof of -formula}{Proof of -formula}$$

$$\frac{V=\frac{2}{2\pi v}}{\sqrt{2\pi v}} = i \mathcal{I} \mathcal{I}^{M} j$$

$$\frac{V=\frac{2}{2\pi v}}{\sqrt{2\pi v}} = i \mathcal{I}^{M} j$$

$$\frac{V=\frac{2}$$

- It is convenient to infroduce more anxiliary variables

SUSY transf. $S\overline{\phi} = \gamma$ $S\gamma = 0$ $S\chi = h$ Sh = 0

- Q-exact term Souf = tSV 5.+. V is invariant under U(1)

$$\mathcal{Y} = \chi(\mu(x^{m}) - \xi - \frac{1}{2}h) + \overline{\varphi}(\mu(x)) \int gauge charge or$$

 $S_{def} = t \left[h(\mu(x)-\xi) - \frac{1}{2}h^{2} + -i\phi\overline{\phi}f_{m}(x)V^{m} - \chi_{\partial_{m}\mu}\psi^{m} + \overline{\eta}\psi^{m}f_{m}(x) \right]$

Localization symmetry of X => symmetry of M, generated by V

$$\delta_{\epsilon} \chi^{M} = \psi^{M} \qquad \delta_{\epsilon} \psi^{M} = -i \phi G^{M}(x) + \varepsilon V^{m}(x) \qquad \delta_{\epsilon} \phi = 0$$

NB [V.G]=0!

$Val_{\epsilon}[X] = \frac{1}{2\pi vol[un]} \int [dX^{\mu}][d\psi^{\mu}][d\phi] e^{\omega + i\phi\mu(x) - \epsilon H(x) + \delta_{\epsilon} y}$

$$\underline{Example} \quad \mathbb{P}^{I} \equiv S^{-} \\
 \mathbb{C}^{2} / \mathcal{H}(1) \qquad (\overline{z}_{1}, \overline{z}_{n}) \stackrel{\mathcal{H}(1)}{\rightarrow} e^{i\alpha} (\overline{z}_{1}, \overline{z}_{n}) \quad V = \overline{z}_{i} \partial_{i} - \overline{z}_{i} \partial_{\underline{i}} \\
 [1] isometry \quad \mathbb{R} = \overline{z}_{i} \partial_{i} - \overline{z}_{i} \partial_{n} - \overline{z}_{i} \partial_{n} + \overline{z}_{i} \overline{\partial}_{n} : (\overline{z}_{i}, \overline{z}_{n}) \longrightarrow (e^{i\lambda} \overline{z}_{i}, e^{-i\lambda} \overline{z}_{n}) \\
 [2] \quad \Omega_{e} - exact + terms \qquad S_{def} = t[\delta_{e}Y] \\
 eY = -g_{ab} \delta_{e} \psi^{a} \overline{\psi}^{b} - g_{ab} \psi^{a} \delta_{e} \overline{\psi}^{b} + \chi (\mu(\overline{z}, \overline{z}) - 1 - \frac{\hbar}{2}) + \overline{\phi} [\partial_{a}\mu \psi^{a} - \partial_{b}\mu \overline{\psi}^{b}] \\
 S_{def}^{b} = +2 [\phi V^{a} + i\epsilon \mathbb{R}^{a}] [\phi V^{a} + i\epsilon \mathbb{R}^{a}] g_{a\underline{a}} + \eta_{i} (\mu_{-1} - \frac{\hbar}{2}) \\
 + \overline{\phi} [-i\phi V^{a} + \epsilon \mathbb{R}^{a}] \partial_{a}\mu - \overline{\phi} [-i\phi V^{a} + \epsilon \mathbb{R}^{a}] \partial_{\underline{a}}\mu \\
 S_{def}^{4} = [i\phi V^{a}_{b} - \epsilon \mathbb{R}^{a}_{b}] \psi^{b} \overline{\psi}^{b} g_{a\underline{b}} - [i\phi V^{a}_{\underline{b}} - \epsilon \mathbb{R}^{a}_{\underline{b}}] \psi^{a} \overline{\psi}^{b} g_{a\underline{a}} \\
 + (\eta_{-}\chi_{i}) \psi^{a} \partial_{a}\mu + (\eta_{-}\chi_{i}) \overline{\psi}^{b} \partial_{\underline{b}}\mu]$$

[3] Saddle points $\delta_{\epsilon} \Psi^{a} = \delta_{\epsilon} \overline{\Psi}^{b} = \delta_{\epsilon} \mathcal{X} = 0 \& SSdef [\underline{\Phi}_{*}] = 0$ (D) $\phi V^{a} + i \epsilon \mathbb{R}^{a} = \phi(\overline{x}', \overline{x}^{*}) + i \epsilon (\overline{x}', -\overline{x}^{*}) = 0 !$ $\Rightarrow two \text{ solutions} : (\phi = -i\epsilon, \overline{x}^{*} = 0), (\phi = +i\epsilon, \overline{x}^{*} = 0)$ (D) h = 0

 $\begin{array}{c} \textcircled{O} & h = 0 \\ \textcircled{O} & \underbrace{\deltaS_{def}}_{\delta h} = 0 \longrightarrow h = \mu(\overline{z}, \overline{z}) - 1 \end{array} \right\} \begin{array}{c} h = 0 \& \mu = 1 \\ h = 0 \\ h = 0 \& \mu = 1 \\ h = 0 \\ h = 0 \\ h = 0 \\ h = 0 \\$

 $\therefore \exists two saddle pts (z'=1, z^2=0, \phi=-i\epsilon, \phi=0, h=0) \mathbb{N}$ $(z'=0, z^2=1, \phi=+i\epsilon, \phi=0, h=0) S$

HW: work out the one-loop determinant around these two fixed points and see if one can get the same answer
NB Quotient with Non-abelian group

$$\begin{split} & S\mathfrak{P}^{\mathsf{M}} = \mathcal{Y}^{\mathsf{M}} \quad S\mathcal{Y}^{\mathsf{M}} = [\mathcal{A}, \mathcal{G}^{\mathsf{M}}] \quad S\overline{\mathcal{P}} = \mathcal{Y} \quad S\mathcal{I} = [\mathcal{A}, \overline{\mathcal{A}}] \\ & S\mathcal{X} = \mathcal{H} \quad S\mathcal{H} = [\mathcal{A}, \mathcal{H}] \quad S^{\mathsf{L}} = Gauge(\mathcal{A}) \end{split}$$

Adjoint Representation

NEKRASOV INSTANTON PARTION FUCTION

·k Dos	= EQUIVARIANT VOLUME OF INSTANTON MODULI STACE	
ND4s	Global symmetry	
0123 <u>x5678</u> Dx x x x x Do x	$G = SO(\%) \times Sp(\%) \times SU(N)_{F}$ $U(k)$	
Low-onergy dynamics on Do branes	combe described as "GAUGED QM	
with 8 supercharges", involving	g (i) Vector (A., GI. Ž;)	
I=1.2,,5 50(5) indices	(ii) adjoint hyper (am. 2°)	
i = 1.2	(III) find hyper (q. A. yiA)	

SUSY Action

$$L_{SYM} = \operatorname{tr}_{k} \left(\frac{1}{2} D_{t} \varphi_{I} D_{t} \varphi_{I} + \frac{1}{2} D_{t} a_{m} D_{t} a_{m} + \frac{1}{4} [\varphi_{I}, \varphi_{J}]^{2} + \frac{1}{2} [a_{m}, \varphi_{I}]^{2} + \frac{1}{4} [a_{m}, a_{n}]^{2} \right. \\ \left. + \frac{i}{2} (\bar{\lambda}^{i\dot{\alpha}})^{\dagger} D_{t} \bar{\lambda}^{i\dot{\alpha}} + \frac{1}{2} (\bar{\lambda}^{i\dot{\alpha}})^{\dagger} (\gamma^{I})^{i}{}_{j} [\varphi_{I}, \bar{\lambda}^{j\dot{\alpha}}] + \frac{i}{2} (\lambda^{i}_{\alpha})^{\dagger} D_{t} \lambda^{i}_{\alpha} - \frac{1}{2} (\lambda^{i}_{\alpha})^{\dagger} (\gamma^{I})^{i}{}_{j} [\varphi_{I}, \lambda^{j}_{\alpha}] \right. \\ \left. - \frac{i}{2} (\lambda^{i}_{\alpha})^{\dagger} (\sigma^{m})_{\alpha\dot{\beta}} [a_{m}, \bar{\lambda}^{i\dot{\beta}}] + \frac{i}{2} (\bar{\lambda}^{i\dot{\alpha}})^{\dagger} (\bar{\sigma}^{m})^{\dot{\alpha}\beta} [a_{m}, \lambda^{i}_{\beta}] \right) .$$

$$L_{f} = D_{t}q_{\dot{\alpha}}D_{t}\bar{q}^{\dot{\alpha}} - (\varphi_{I}\bar{q}^{\dot{\alpha}} - \bar{q}^{\dot{\alpha}}v_{I})(q_{\dot{\alpha}}\varphi_{I} - v_{I}q_{\dot{\alpha}}) + i(\psi^{i})^{\dagger}D_{t}\psi^{i} + (\psi^{i})^{\dagger}(\gamma^{I})^{i}{}_{j} \ \psi^{j}\varphi_{I} + \sqrt{2}i\left((\bar{\lambda}^{i\dot{\alpha}})^{\dagger}\bar{q}^{\dot{\alpha}}\psi^{i} - (\psi^{i})^{\dagger}q_{\dot{\alpha}}\bar{\lambda}^{i\dot{\alpha}}\right) ,$$

SUSY Transformation Rules

$$\bar{Q}^{i\dot{\alpha}}A_t = i\bar{\lambda}^{i\dot{\alpha}}, \quad \bar{Q}^{i\dot{\alpha}}\varphi^I = -i(\gamma^I)^i{}_j\bar{\lambda}^{j\dot{\alpha}}$$
$$\bar{Q}^{i\dot{\alpha}}\bar{\lambda}^{j\dot{\beta}} = \epsilon^{\dot{\alpha}\dot{\beta}}(\gamma^I\omega)^{ij}D_0\varphi^I - \frac{i}{2}\epsilon^{\dot{\alpha}\dot{\beta}}(\gamma^{IJ}\omega)^{ij}[\varphi^I,\varphi^J] - 2i\omega^{ij}D^{\dot{\alpha}}{}_{\dot{\gamma}}\epsilon^{\dot{\gamma}\dot{\beta}}$$

$$\bar{Q}^{i\dot{\alpha}}a^{m} = (\bar{\sigma}^{m})^{\dot{\alpha}\beta}\lambda^{i}_{\beta}$$
$$\bar{Q}^{i\dot{\alpha}}\lambda^{j}_{\beta} = (\bar{\sigma}^{m})^{\dot{\alpha}\gamma}\epsilon_{\gamma\beta}\left(i\omega^{ij}D_{t}a_{m} + (\gamma^{I}\omega)^{ij}[\varphi_{I}, a_{m}]\right)$$

$$\bar{Q}^{i\dot{\alpha}}q_{\dot{\beta}} = \sqrt{2}\delta^{\dot{\alpha}}_{\dot{\beta}}\psi^{i}$$
$$\bar{Q}^{i\dot{\alpha}}\psi^{j} = \sqrt{2}\left[i\omega^{ij}D_{t}q_{\dot{\beta}} - (\gamma^{I}\omega)^{ij}q_{\dot{\beta}}\varphi_{I}\right]\epsilon^{\dot{\beta}\dot{\alpha}}$$

Why do we study DO-DA QM (or dimil reduction to matrix model)?

<u>SW theory</u>

can determine the low-energy effective theory in the Coulomb branch of 4d N=2 SUST gauge theories

derivation from first principles ?

moduli space of YM instantons! ⇒ Volume of Minst equivariant

partition-function of DO-DX QM can be identified as

the volume of Minst

$SU(2)_{\chi} \times SU(2)_{\chi} \times SU(2$	U(2),XSU(2) _R ⊂ global rym.G	BRSTchange
supercharge Q'a	: $(1, 2, 2, 1) \oplus (1, 2, 1, 2)$	
Vector multiplet	$A_{o} + i \varphi_{\pm} \equiv \phi$: (1.1.1.1)	
	$A_{o} - i\varphi_{x} \equiv \overline{\phi}$: (1, 1, 1, 1)	
	\mathcal{G}_{m} : (1.1.2.2)	
	$\lambda_{\alpha}^{i}:(2.1.2.1)\oplus(2.1.1.2)$	
adj. hyper	$a_m:(2,2,1,1)$	
	$\bar{\lambda}_{a}^{\dot{i}}:(1.2.2.1)\oplus(1.2.1.2)$	
fund. hyper	$\vartheta_{i}:(1,2,1,1)$	
	4 ⁱ : (1,1,2,1) @ (1,1,1,2)	

$$\begin{split} & \text{Su}(2)_{I} \times \widehat{\text{Su}}(2)_{h} \times \text{Su}(2)_{L} \subset \text{Su}(2)_{I} \times \text{Su}(2)_{L} \times \text{Su}(2)_{L} \times \text{Su}(2)_{L} \\ & \text{Supercharge } \overline{Q}_{A}^{\frac{1}{4}} : (1.2,2,1) \oplus (1.2,1,2) \rightarrow \cdots \oplus (1,1,1) \oplus (1.3,1) \\ & \text{Vector multiplet } A_{0} + i \mathcal{P}_{5} \equiv \phi : (1,1,1,1) \rightarrow (1,1,1) \\ & A_{0} - i \mathcal{P}_{5} \equiv \overline{\phi} : (1,1,1,1) \rightarrow (1,1,1) \\ & A_{0} - i \mathcal{P}_{5} \equiv \overline{\phi} : (1,1,1,1) \rightarrow (1,1,1) \\ & \mathcal{P}_{m} : (1.1,2,2) \rightarrow (1,2,2) \\ & \lambda_{\alpha}^{\frac{1}{4}} : (2,1,2,1) \oplus (2,1,1,2) \rightarrow (2,1,2) \oplus (2,2,1) \\ & \lambda_{\alpha}^{\frac{1}{4}} : (2,2,1,1) \rightarrow (2,2,1) \\ & \lambda_{\alpha}^{\frac{1}{4}} : (1,2,2,1) \oplus (1,2,1,2) \rightarrow (1,2,2) \oplus (1,1,1) \oplus (1,3,1) \\ & \Psi_{m+\chi} & \mathcal{P} \\ & \chi_{\alpha}^{\frac{1}{4}} : (1,2,1,1) \rightarrow (1,2,1) \\ & \Psi_{\alpha}^{\frac{1}{4}} : (1,1,2,1) \oplus (1,1,1,2) \rightarrow (1,2,1) \\ & \Psi_{\alpha}^{\frac{1}{4}} : (1,1,2,1) \oplus (1,1,1,2) \rightarrow (1,2,1) \\ & \Psi_{\alpha}^{\frac{1}{4}} : (1,1,2,1) \oplus (1,1,1,2) \rightarrow (1,2,1) \\ & \Psi_{\alpha} \\ & \Psi$$

$$SUSY - Hransf. = SUSY + Hransf. in the case of Symplectic quotiont.$$

$$S = 0, S = 7, S = [+,], S = [+,], S = P_m, S = P_m + R_m + R_m + R_m], S = [+, P_m], S = P_m, S = P_m + R_m + R_m + R_m], S = [+, P_m], S = P_m, S = P_m,$$

Then, the SUSY Lagrangian in 'O'-dimensions [dim'l red. of QM] is Q-exact !!

SUSY ACTION

Note also that, in flat ambient space. $W + i\phi \mu = S(\#)$

- Volume of the instanton moduli space [U(k)-quotient], Minst

- Equivariant parameters $SU(2)_{L} \times SU(2)_{L} \times SU(N)_{F}$ Nekrasov's -R-parameters $[E_{i}, E_{i}]$ - Turning on FI parameters, $Z_{D-1} = Z_{Nek}^{k} [\overline{a}, E_{i}, E_{i}]$

Nekrasov Partition Function

Result: [Nekrasov]

. Volume can be computed by Gaussian path-integrals over a set of saddle-points (solutions of deformed ADHM), characterized by N-colored Young diagrams

Part II

Exact S² Partition Function

Hard Problems in Theoretical Physics

Particles (or strings) that do strongly interact with each other

- Many intriguing phenomena in quantum field theory and string theory
 - e.g. Quark confinement in QCD
 - M-theory: unified framework for quantum gravity

inherently strongly interacting

string theories in weak-coupling limits

- Non-fermi liquid, High T_c superconductor, and so on
- These systems are far beyond the perturbative regime

How to Study Strong Dynamics

In theoretical physics, there are three different methods

1. DUALITY

Gauge/Gravity duality (a.k.a. holography) leads to a number of novel predictions on strong dynamics

Strong Gauge Dynamics = Classical Einstein Gravity

2. SUPERSYMMETRY

Complementary strategy to attack strong coupling problem

3. INTEGRABILITY

So powerful! But rare in quantum field theories

How to Study Strong Dynamics

A New Technique: Exact Result

Supersymmetry:

- Exactly computable observables in SUSY theories in the past ['80-'90]
- They know the vacuum dynamics only, or are relevant to math
 - e.g. Witten Index : Vacuum
 - Topological Invariants: Math
 - Affleck-Dine-Seiberg superpotential: Vacuum
 - Seiberg-Witten solution: limited to 4d N=2 theories

How to Study Strong Dynamics

A New Technique: Exact Result

Question:

" Can we find an exactly computable observable in SUSY theories?"

- Wide application to any SUSY theories
- Relevance to physics beyond the vacuum dynamics
- Remarkable progress recently (including my own), using SUSY localization techniques

Localization

Start with a following path-integral

$$Z[t] = \int \mathcal{D}\Phi \ e^{-S[\Phi] - tQ.V[\Phi]}$$

$$\begin{aligned} Q.S[\phi] &= 0\\ Q^2 &= J \end{aligned}$$

- ${\cal S}[\Phi]$: action of a theory we want to study
- The term V is invariant under J, $J.V[\Phi] = 0$

Supersymmetry tells us

Z[0]	$=$ $Z[\infty]$
$S[\Phi]$	$S_{\text{def}} = Q.V[\Phi]$
Quantum	Semi-Classical
Hard to evaluate	Easy to evaluate (Gaussian Integral)

Localization

RESULT

$$Z[0] = \sum_{\phi_*} e^{-S[\phi_*]} \left(\frac{\det \Delta_f^{\mathrm{def}}}{\det \Delta_b^{\mathrm{def}}} \right) \Big|_{\phi_*}$$

where ϕ_* satisfy (1) equation of motion of the deformed theory $\left. \frac{\delta S_{\text{def}}}{\delta \phi} \right|_{\phi = \phi_*} = 0$

(2) supersymmetric condition

For BPS operators $Q.\mathcal{O}_{BPS} = 0$,

$$\langle \mathcal{O}_{\rm BPS} \rangle = \sum_{\phi_*} e^{-S[\phi_*]} \left(\frac{\det \Delta_f^{\rm def}}{\det \Delta_b^{\rm def}} \right) \bigg|_{\phi_*} \mathcal{O}_{\rm BPS}(\phi_*)$$

Old vs New

80s-90s: constant spinor

$$\nabla_{\mu}\epsilon = 0$$

- Nilpotent supercharge $Q^2 = 0$
- Topological twisting needed
- Full Hilbert space is projected down to the subspace "topological Hilbert space"

Recent : Killing spinor

$$\nabla_{\mu}\epsilon = \gamma_{\mu}\tilde{\epsilon}$$

- Not Nilpotent supercharge, but $Q^2 = J$
- J generates an isometry of (compact) space
- No topological twisting needed !
- \exists new observable telling us about something beyond the vacuum

Recent Developments

New Physical Observables:

Sphere-Partition Function	Superconformal Index
S ⁴ : [Pestun]	S ³ x S ¹ : [Romelsberger]
S ³ : [Kapustin,Willet,Yaakov]	S² x S¹: [Kim]
[Jafferis]	[Imamura,Yokohama]
[Hama,Hosomichi, S.L]	

We learned AGT correspondence, F-theorem, Test of Dualities and so on

S²: This is what I want to discuss today !

New Exact Results in 2d SUSY Theories

- SUSY Lagrangian on Two-Sphere
- Exact Two-Sphere Partition Function

SUSY on Two-Sphere: SU(2|1)

• Subalgebra of N=(2,2) SCA:

 $\{S_{\alpha}, Q_{\beta}\} = \gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, S^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\ \alpha\beta} S_{\beta}$ $[R, S_{\alpha}] = +S_{\alpha}$ $\{\bar{S}_{\alpha}, \bar{Q}_{\beta}\} = -\gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, Q^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\ \alpha\beta} Q_{\beta} \qquad [R, Q_{\alpha}] = -Q_{\alpha}$ $\{Q_{\alpha}, \bar{Q}_{\beta}\} = \gamma_{\alpha\beta}^{m} K_{m} + \frac{1}{2} C_{\alpha\beta} \mathcal{A} \qquad [J_{m}, \bar{Q}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\ \alpha\beta} \bar{Q}_{\beta} \qquad [R, \bar{Q}_{\alpha}] = +\bar{Q}_{\alpha}$ $\{S_{\alpha}, \bar{S}_{\beta}\} = \gamma^m_{\alpha\beta} K_m - \frac{1}{2} C_{\alpha\beta} \mathcal{A}$ $[J_m, \bar{S}^\alpha] = -\frac{1}{2} \gamma_m^{\ \alpha\beta} \bar{S}_\beta$ $[R, \bar{S}_{\alpha}] = -\bar{S}_{\alpha}$ $[K_m, S^\alpha] = -\frac{1}{2} \gamma_m^{\ \alpha\beta} \bar{Q}_\beta$ $[\mathcal{A}, S_{\alpha}] = \bar{Q}_{\alpha}$ $[J_m, J_n] = i\epsilon_{mnn}J^p$ $[K_m, Q^\alpha] = -\frac{1}{2} \gamma_m^{\ \alpha\beta} \bar{S}_\beta$ $[\mathcal{A}, Q_{\alpha}] = -\bar{S}_{\alpha}$ $[K_m, K_n] = -i\epsilon_{mnp}J^p$ $[K_m, \bar{Q}^\alpha] = -\frac{1}{2} \gamma_m^{\ \alpha\beta} S_\beta \qquad [\mathcal{A}, \bar{Q}_\alpha] = -S_\alpha$ $[J_m, K_n] = i\epsilon_{mnn}K^p$ $[K_m, \bar{S}^\alpha] = -\frac{1}{2} \gamma_m^{\ \alpha\beta} Q_\beta \qquad [\mathcal{A}, \bar{S}_\alpha] = Q_\alpha \,.$

SUSY on Two-Sphere: SU(2|1)

- Subalgebra of N=(2,2) SCA
- Bosonic subalgebra:
 - SU(2): rotational symmetry of S²
 - U(1): vector U(1) R-symmetry

NB: axial U(1) R-symmetry is broken unless the theory is conformal

• Parametrized by Killing spinors $(\epsilon, \overline{\epsilon})$ satisfying

$$\nabla_i \epsilon = +\frac{1}{2l} \gamma_i \gamma^3 \epsilon \qquad \nabla_i \bar{\epsilon} = -\frac{1}{2l} \gamma_i \gamma^3 \bar{\epsilon}$$

SUSY on Two-Sphere: SU(2|1)

• Parametrized by Killing spinors $(\epsilon, \bar{\epsilon})$ satisfying

$$\nabla_i \epsilon = +\frac{1}{2l} \gamma_i \gamma^3 \epsilon \qquad \nabla_i \bar{\epsilon} = -\frac{1}{2l} \gamma_i \gamma^3 \bar{\epsilon}$$

Solutions of Killing spinor equations are given by

two-component constant spinors

2
$$\epsilon = \exp\left(-\frac{i\theta}{2}\gamma_{\hat{2}}\right)\exp\left(\frac{i\varphi}{2}\gamma^{\hat{3}}\right)\epsilon_{\circ}$$

2 $\bar{\epsilon} = \exp\left(+\frac{i\theta}{2}\gamma_{\hat{2}}\right)\exp\left(\frac{i\varphi}{2}\gamma^{\hat{3}}\right)\bar{\epsilon}_{\circ}$

SUSY Rep. in Field Theories: $\exists 1/l$ - correction in SUSY transf. rules,

• Vector multiplet, $(A_i, \sigma_1, \sigma_2, \lambda, D)$

$$\delta\lambda = \dots + i \left(F_{12} + i[\sigma_1, \sigma_2] + \frac{1}{l}\sigma_1\right) \gamma^3 \epsilon$$

• (charged) Chiral multiplet of U(1)_R charge **q**, (ϕ, ψ, F)

$$\delta\psi = \dots + i\frac{q}{2l}\phi\gamma_3\epsilon$$

• Twisted chiral multiplet, (Y, χ, G)

$$\delta\chi = \dots - \frac{1+\gamma^3}{2}\epsilon\left(\bar{G} + \frac{\Delta}{l}\overline{Y}\right) - \frac{1-\gamma^3}{2}\epsilon\left(G + \frac{\Delta}{l}Y\right)$$

 Δ : free parameter

N=(2,2) SUSY on S²

SUSY Rep. in Field Theories:

$$[\delta_{\epsilon}, \delta_{\bar{\epsilon}}] = \delta_{SU(2)}(\xi) + \delta_R(\alpha) + \delta_G(\Lambda) \qquad [\delta_{\epsilon}, \delta_{\epsilon}] = 0 \qquad [\delta_{\bar{\epsilon}}, \delta_{\bar{\epsilon}}] = 0$$

[1] SU(2) rotation
$$\mathcal{L}_{\xi} \equiv \xi^{i} \nabla_{i} + \frac{1}{4} \nabla_{i} \xi_{j} \gamma^{ij} \qquad \xi^{i} = -i \bar{\epsilon} \gamma^{i} \epsilon$$
Lorentz transf.
acting on fermions

[3] Gauge rotation
$$\Lambda = (\bar{\epsilon}\epsilon)\sigma_1 - i(\bar{\epsilon}\gamma^3\epsilon)\sigma_2 + \xi^i A_i$$

SUSY Lagrangian on S²: up to $(1/l)^2$ - corrections

• Kinetic Lagrangians for

[1] Vector multiplet :

$$\mathcal{L}_{\text{v.m.}} = \frac{1}{2g^2} \text{Tr} \left[\left(F_{12} + \frac{\sigma_1}{l} \right)^2 + (D_i \sigma_1)^2 + (D_i \sigma_2)^2 - [\sigma_1, \sigma_2]^2 + D^2 + i\bar{\lambda}\gamma^i D_i \lambda + i\bar{\lambda}[\sigma_1, \lambda] + \bar{\lambda}\gamma^3[\sigma_2, \lambda] \right]$$

[2] Chiral multiplet of $U(1)_R$ charge q :

$$\mathcal{L}_{\text{c.m.}} = D_i \bar{\phi} D^i \phi + \bar{\phi} \left[\sigma_1^2 + \sigma_2^2 + i \frac{q-1}{l} \sigma_2 - \frac{q^2}{4l^2} + \frac{q}{4} \mathcal{R} \right] \phi + \bar{F}F + i \bar{\phi} D \phi$$
$$- i \bar{\psi} \gamma^i D_i \psi + \bar{\psi} \left[i \sigma_1 - \left(\sigma_2 + i \frac{q}{2l} \right) \gamma^3 \right] \psi + i \bar{\psi} \lambda \phi - i \bar{\phi} \bar{\lambda} \psi$$

[3] Twisted chiral multiplet :

$$\mathcal{L}_{t_{c.m.}} = D^{i}\overline{Y}D_{i}Y + i\bar{\chi}\gamma^{i}D_{i}\chi + \left(\bar{G} + \frac{\Delta}{l}\overline{Y}\right)\left(G + \frac{\Delta}{l}Y\right)$$

SUSY Lagrangian on S²: up to $(1/l)^2$ - corrections

• Superpotential $W(\phi)$: possible if **q[W] = 2** (q: U(1)_R charge)

$$\mathcal{L}_{\mathcal{W}} = \frac{\partial \mathcal{W}}{\partial \phi^{i}} F^{i} - \frac{1}{2} \frac{\partial^{2} \mathcal{W}}{\partial \phi^{i} \partial \phi^{j}} \psi^{i} \psi^{j} + \text{c.c.}$$

NB: SUSY on S² should contain a conserved U(1)_R charge

• Twisted Superpotential W(Y) (twisted chiral multiplet (Y, χ, G))

$$\mathcal{L}_{W} = -iW'(Y)G - W''(Y)\bar{\chi}\left(\frac{1-\gamma^{3}}{2}\chi\right) + \frac{i}{l}W(Y)$$

e.g. $\mathcal{L}_{\mathrm{FI},\theta} = -i\mathrm{Tr}\left[\xi\left(\mathrm{D}-\frac{\sigma_{2}}{l}\right) + \frac{\theta}{2\pi}F\right]$

Localize the Path-Integral

Strategy: Localization Principle

- Choice of Supercharge Q and Q-exact Deformation Terms
- SUSY Saddle Point Configurations
- Integration along the Directions Transverse to Saddle Point Locus, Gaussian Approximation Becomes Exact

Localization Scheme

• Choice of supercharge :
$$Q^2 = J + \frac{R}{2}$$

 $\epsilon = \exp\left(-\frac{i\theta}{2}\gamma_2\right) \exp\left(\frac{i\varphi}{2}\gamma^3\right) \begin{pmatrix} 1\\0 \end{pmatrix} = e^{+i\varphi/2} \begin{pmatrix} \cos\frac{\theta}{2}\\\sin\frac{\theta}{2} \end{pmatrix}$
 $\bar{\epsilon} = \exp\left(+\frac{i\theta}{2}\gamma_2\right) \exp\left(\frac{i\varphi}{2}\gamma^3\right) \begin{pmatrix} 0\\1 \end{pmatrix} = e^{-i\varphi/2} \begin{pmatrix} \sin\frac{\theta}{2}\\\cos\frac{\theta}{2} \end{pmatrix}$
 $\bar{s} \in fixed pts$
 $[\delta_{\epsilon}, \delta_{\bar{\epsilon}}] = \delta_{SU(2)}(\xi) + \delta_R(\alpha) + \delta_G(\Lambda)$
 $\frac{i}{r}\partial_{\varphi} \qquad \alpha = \frac{1}{2r} \quad \Lambda = \cos\theta\sigma_1 - i\sigma_2 - A_{\varphi}$

Localization Scheme

• Q-exact deformation : Given the above choice,

$$\mathcal{L}_{v.m.} = \mathcal{Q}V_{v.m.} \quad \mathcal{L}_{c.m.} = \mathcal{Q}V_{c.m.} \quad \mathcal{L}_{t.c.m.} = \mathcal{Q}V_{t.c.m.} \quad \mathcal{L}_{\mathcal{W}} = \mathcal{Q}V_{\mathcal{W}}$$
Kinetic Lagrangians: Q-exact deformations Superpotential

e.g.
$$g^2 \mathcal{L}_{\text{v.m.}} = \delta_{\mathcal{Q}} \delta_{\bar{\epsilon}_{\mathcal{Q}}} \operatorname{Tr} \left(\frac{1}{2} \bar{\lambda} \gamma^3 \lambda - 2i \mathrm{D} \sigma_2 + \frac{i}{r} \sigma_2^2 \right) \quad \mathbf{V}_{\text{v.m.}}$$

$$(\mathcal{L}_{\text{c.m.}} + \mathcal{L}_{\text{mass}}) = \delta_{\mathcal{Q}} \delta_{\bar{\epsilon}_{\mathcal{Q}}} \operatorname{Tr} \left(\bar{\psi} \gamma^{\hat{3}} \psi - 2\bar{\phi} \left(\sigma_{2} + m + i \frac{q}{2r} \right) \phi + \frac{i}{r} \bar{\phi} \phi \right)$$

V_{c.m.}

Localization Scheme

• Q-exact deformation : Given the above choice,

$$\begin{array}{ll} \mathcal{L}_{\mathrm{v.m.}} = \mathcal{Q} V_{\mathrm{v.m.}} & \mathcal{L}_{\mathrm{c.m.}} = \mathcal{Q} V_{\mathrm{c.m.}} & \mathcal{L}_{\mathrm{t.c.m.}} = \mathcal{Q} V_{\mathrm{t.c.m.}} \\ \\ & \text{Kinetic Lagrangians: Q-exact deformations} & \text{Superpotential} \end{array}$$

- **Decoupling Theorem:** S² partition function is independent of
 - (1) Gauge coupling constant : tell us about the physics at infrared
 - (2) Parameters in superpotential $\mathcal{W}(\phi)$

Gauged Linear Sigma Model (GLSM)

N=(2,2) gauge theory with gauge group G, coupled to chiral multiplets of U(1)_R charge q in rep. **R**

• SUSY saddle point configurations = Columb branch vacua

$$\sigma_{2} = \sigma = const.$$

$$F_{12} + \frac{\sigma_{1}}{l} = 0$$

$$\int_{S^{2}} F_{12} = 2\pi B$$
GNO
Quantized

 π_1

and all other fields vanish

Gauged Linear Sigma Model (GLSM)

- One-loop determinant
 - Chiral multiplet in rep. R : Expand S_{def} to quadratic order in the fluctuation fields

$$\Delta_b = \left[-D_i^2 + (\sigma_1 r)^2 + (\sigma_2 r + i\frac{q}{2})^2 - i(\sigma_2 r + i\frac{q}{2}) \right]$$
$$\Delta_f = \left[-i\gamma^i \tilde{D}_i + i\sigma_1 r - (\sigma_2 r + i\frac{q}{2})\gamma^3 \right]$$
Monopole
$$A = \frac{B}{2} \left(\kappa - \cos \theta \right) d\varphi$$

Gauged Linear Sigma Model (GLSM)

- One-loop determinant
 - Chiral multiplet in rep. R :

$$\det \Delta_b = \prod_{\rho \in \mathbf{R}} \prod_{J=0}^{\infty} \left[\left(J + \frac{|\rho \cdot B| + q}{2} - il\rho \cdot \sigma \right) \cdot \left(J + 1 + \frac{|\rho \cdot B| - q}{2} + il\rho \cdot \sigma \right) \right]^{2J + |\rho \cdot B| + 1}$$

$$\det \Delta_f = \prod_{\rho \in \mathbf{R}} (-1)^{\frac{|\rho \cdot B| - \rho \cdot B}{2}} \prod_{J=0}^{\infty} \left[\left(J + \frac{|\rho \cdot B| + q}{2} - il\rho \cdot \sigma \right)^{2J + |\rho \cdot B|} \right]$$
$$\times \left(J + 1 + \frac{|\rho \cdot B| - q}{2} + il\rho \cdot \sigma \right)^{2J + |\rho \cdot B| + 2}$$

 \Rightarrow Huge Cancellation between B and F Eigenvalues Occurs !

Gauged Linear Sigma Model (GLSM)

- One-loop determinant
 - Chiral multiplet of weight ρ :

$$Z_{1-\text{loop}} = \prod_{J=0}^{\infty} \frac{J+1-\frac{q}{2}+il\rho\cdot\sigma-\frac{\rho\cdot B}{2}}{J+\frac{q}{2}-il\rho\cdot\sigma-\frac{\rho\cdot B}{2}}$$

[1] Still left with infinite number of unpaired eigen modes
[2] Index Theorem for Transversally Elliptic Operators
[3] It is obviously divergent !
Gauged Linear Sigma Model (GLSM)

• UV divergence in sphere-partition function Λ : cut-off scale

$$-\log Z_{S^2} \equiv F_{S^2} = (l\Lambda)^2 + \dots + \frac{c}{3} \cdot \log(l\Lambda) + \text{finite terms}$$

"universal"

- Power divergence: cured by local counter terms
- Log divergence: reflects trace anomaly and c denotes central charge.

Gauged Linear Sigma Model (GLSM)

One-loop determinant

- Chiral multiplet of weight
$$\rho$$
: $Z_{1-\text{loop}} = \prod_{J=0}^{\infty} \frac{J+1-\frac{q}{2}+il\rho\cdot\sigma-\frac{\rho\cdot B}{2}}{J+\frac{q}{2}-il\rho\cdot\sigma-\frac{\rho\cdot B}{2}}$

$$\log Z_{1-\text{loop}} = (1 - q + 2il\rho \cdot \sigma) \log[l\Lambda] + \cdots$$
[1] [2] Λ : cut-off scale

[1] Central charge

[2] One-loop correction to FI parameter

Gauge Linear Sigma Model (GLSM)

• Result:

 $\boldsymbol{\xi}$: FI parameter

heta : theta angle

W : Weyl group r

 $\boldsymbol{r}: \text{rank of } \boldsymbol{G}$

$$Z_{S^2}^{\text{GLSM}} = \frac{(l\Lambda)^{c/3}}{|W|} \sum_B \int_{\mathfrak{t}} d^r \sigma \ e^{-4\pi i \xi_{\text{ren}} \sigma + i\theta B} \times Z_{1\text{-loop}}^{\text{reg}}(\sigma)$$

- (regularized) One-loop determinant :

$$Z_{\text{v.m.}} = \prod_{\alpha \in \Delta^+} \left[\left(\frac{\alpha \cdot B}{2} \right)^2 + (\alpha \cdot l\sigma)^2 \right] \qquad Z_{\text{c.m.}} = \prod_{\rho \in \mathbf{R}} \frac{\Gamma\left(\frac{q}{2} - il(\rho \cdot \sigma + m) - \frac{\rho \cdot B}{2}\right)}{\Gamma\left(1 - \frac{q}{2} + il(\rho \cdot \sigma + m) - \frac{\rho \cdot B}{2}\right)}$$

- Central charge :

$$\frac{c}{3} = \sum_{i} \dim[\mathbf{R}_{i}](1 - q_{i}) - \dim[G] = \mathrm{Tr}_{f}[R$$

chiral multiplets vector multiplet

Let's compute the one-loop determinant in a "fancy " way !

Cohomological Basis:

e.g. chiral multiplet (ϕ, ψ, F) 2 4 2

 $\begin{array}{lll} X: \mathbf{2B} & \Psi: \mathbf{2F} \\ \hline \phi, \overline{\phi} & \epsilon \gamma^3 \psi, \ \overline{\epsilon} \gamma^3 \overline{\psi} \end{array}$ $\hat{Q}\Psi: \mathbf{2B} & \hat{Q}X: \mathbf{2F} \\ \hline \overline{\epsilon} \psi, \ \epsilon \overline{\psi} \end{array}$

Cohomological Basis :

$$X : \mathbf{B}$$
 $\Psi : \mathbf{F}$
 $\hat{Q}\Psi : \mathbf{B}$ $\hat{Q}X : \mathbf{F}$

In the above basis, the deformed Lagrangian can be written as follows :

$$\mathcal{L}_{def} = \hat{Q}\mathcal{V} = \mathcal{L}_b + \mathcal{L}_f \qquad \mathcal{V} = (\hat{Q}X \quad \Psi) \begin{pmatrix} D_{00} & D_{01} \\ D_{10} & D_{11} \end{pmatrix} \begin{pmatrix} X \\ \hat{Q}\Psi \end{pmatrix} ,$$
$$\mathcal{L}_{b} = \begin{pmatrix} X & \hat{Q}\Psi \end{pmatrix} \begin{pmatrix} H & \\ 1 \end{pmatrix} \begin{pmatrix} D_{00} & D_{01} \\ D_{10} & D_{11} \end{pmatrix} \begin{pmatrix} X \\ \hat{Q}\Psi \end{pmatrix} \hat{Q}^2 \equiv H$$
$$(D_{22} \quad D_{23}) \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} \hat{Q}X \end{pmatrix}$$

 $\mathcal{L}_{\rm f} = \begin{pmatrix} \hat{Q}X & \Psi \end{pmatrix} \begin{pmatrix} D_{00} & D_{01} \\ D_{10} & D_{11} \end{pmatrix} \begin{pmatrix} 1 & & \\ & H \end{pmatrix} \begin{pmatrix} QX \\ \Psi \end{pmatrix}$

One-loop determinant can be written as

$$\left(\frac{\det K_f}{\det' K_b}\right)^2 = \frac{\det_{\Psi} H}{\det'_X H} = \frac{\det_{\operatorname{Coker} D_{10}} H}{\det'_{\operatorname{Ker} D_{10}} H}$$

Can read off from the index of the differential operator D_{10}

$$\operatorname{ind} D_{10} = \operatorname{Tr}_{\operatorname{Ker} D_{10}} \left[e^{-Ht} \right] - \operatorname{Tr}_{\operatorname{Coker} D_{10}} \left[e^{-Ht} \right]$$

NB The differential operator D₁₀ is a **transversally elliptic**

Atiyah-Bott Localization Formula Ν $\frac{\operatorname{Tr}_X[e^{-Ht}] - \operatorname{Tr}_{\Psi}[e^{-Ht}]}{\det(1 - \partial \tilde{x} / \partial x)|_{x_*}}$ $\operatorname{ind}[D_{10}] = \sum$ x_* :fixed points - Fixed points X_{*}: $\tilde{x}_* = x_*$ ($\tilde{x} = e^{-Ht}x$) - Operator H: $[\delta_{\epsilon}, \delta_{\bar{\epsilon}}] = \delta_{SU(2)}(\xi) + \delta_R(\alpha) + \delta_G(\Lambda)$ H $\sigma_2 = \sigma$

$$H|_{x_*} = \partial_{\varphi} - \frac{i}{2}Q_R + \left[\sigma - i\frac{B}{2}\cos\left(\theta_*\right) + A_{\varphi}(\theta_*)\right] \qquad A = \frac{B}{2}\left(\kappa - \cos\theta\right)d\varphi$$
$$\sigma_1 = -\frac{B}{2}$$

Atiyah-Bott Localization Formula

$$\operatorname{ind}[D_{10}] = \sum_{x_*: \text{fixed points}} \frac{\operatorname{Tr}_X[e^{-Ht}] - \operatorname{Tr}_\Psi[e^{-Ht}]}{\det(1 - \partial \tilde{x}/\partial x)|_{x_*}}$$
$$H|_{x_*} = \partial_{\varphi} - \frac{i}{2}Q_R + \left[\sigma - i\frac{B}{2}\cos\left(\theta_*\right) + A_{\varphi}(\theta_*)\right]$$
$$\operatorname{Near N pole,} \left(z \simeq \theta e^{i\varphi} \ , \ \bar{z} \simeq \theta e^{-i\varphi}\right)$$
$$[1] \ \det\left(1 - \partial \tilde{x}/\partial x\right) = (1 - y)(1 - y^{-1}) \qquad y = e^{-it}$$

Atiyah-Bott Localization Formula

$$\operatorname{ind}[D_{10}] = \sum_{x_*: \text{fixed points}} \frac{\operatorname{Tr}_X[e^{-Ht}] - \operatorname{Tr}_\Psi[e^{-Ht}]}{\det(1 - \partial \tilde{x}/\partial x)|_{x_*}}$$
$$H|_{\mathrm{N}} = \partial_{\varphi} - \frac{i}{2}Q_R + \left[\sigma - i\frac{B}{2}\cos\left(\theta = 0\right) + A_{\varphi}(\theta = 0)\right]$$

Near N pole,

[2]
$$\operatorname{Tr}_X \left[e^{-tH} \right] = y^{q/2 - B/2 - i\sigma} + \frac{y^{-q/2 + B/2 + i\sigma}}{\phi}$$

 $Q_R[\phi] = -q \quad Q_R[\bar{\phi}] = +q$

Atiyah-Bott Localization Formula

$$\operatorname{ind}[D_{10}] = \sum_{x_*: \text{fixed points}} \frac{\operatorname{Tr}_X[e^{-Ht}] - \operatorname{Tr}_\Psi[e^{-Ht}]}{\det(1 - \partial \tilde{x}/\partial x)|_{x_*}}$$
$$H|_{\mathrm{N}} = \partial_{\varphi} - \frac{i}{2}Q_R + \left[\sigma - i\frac{B}{2}\cos\left(\theta = 0\right) + A_{\varphi}(\theta = 0)\right]$$

Near N pole,

[3]
$$\operatorname{Tr}_{\Psi} \left[e^{-Ht} \right] = y^{q/2-1-B/2-i\sigma} + y^{-q/2+1+B/2+i\sigma}$$

 $\epsilon \gamma^{3} \psi \qquad \overline{\epsilon} \gamma^{3} \overline{\psi}$
 $Q_{R}[\epsilon \gamma^{3} \psi] = 1 + (1-q)$

Atiyah-Bott Localization Formula

$$\operatorname{ind} D_{10} = \operatorname{Tr}_{\operatorname{Ker} D_{10}} \left[e^{-Ht} \right] - \operatorname{Tr}_{\operatorname{Coker} D_{10}} \left[e^{-Ht} \right]$$
$$X \qquad \Psi$$

Near N pole, let's collecting all the results,

Atiyah-Bott Localization Formula

$$\operatorname{ind} D_{10} = \operatorname{Tr}_{\operatorname{Ker} D_{10}} \left[e^{-Ht} \right] - \operatorname{Tr}_{\operatorname{Coker} D_{10}} \left[e^{-Ht} \right]$$
$$X \qquad \Psi$$

Near S pole, one can obtain

One-Loop Determinant

$$\left(\frac{\det K_f}{\det' K_b}\right)^2 = \frac{\det_{\Psi} H}{\det'_X H} = \frac{\det_{\operatorname{Coker} D_{10}} H}{\det'_{\operatorname{Ker} D_{10}} H}$$

$$Z_{1-\text{loop}} = \frac{\det K_f}{\det K_b} = \prod_{J=0} \frac{J+1+i\sigma - q/2 - B/2}{J-i\sigma + q/2 - B/2}$$

Factorization of S² partition function : 2d N=(2,2) U(1) gauge theory

$$Z_{S^2}^{\text{GLSM}} = \frac{(l\Lambda)^{c/3}}{|W|} \sum_B \int_{\mathfrak{t}} d^r \sigma \ e^{-4\pi i \xi_{\text{ren}} \sigma + i\theta B} \times Z_{1\text{-loop}}^{\text{reg}}(\sigma)$$

$$Z_{\text{v.m.}} = \prod_{\alpha \in \Delta^+} \left[\left(\frac{\alpha \cdot B}{2} \right)^2 + (\alpha \cdot l\sigma)^2 \right] \qquad Z_{\text{c.m.}} = \prod_{\rho \in \mathbf{R}} \frac{\Gamma\left(\frac{q}{2} - il(\rho \cdot \sigma + m) - \frac{\rho \cdot B}{2}\right)}{\Gamma\left(1 - \frac{q}{2} + il(\rho \cdot \sigma + m) - \frac{\rho \cdot B}{2}\right)}$$
simple poles

If ξ_{ren} does not vanish, the matrix integral over the Coulomb branch can be evaluated by residues. Let us assume that $\xi_{ren} > 0$

Factorization of S² partition function :

G=U(1) with N_F chiral multiplets of charge +1 and N_F chiral multiplets of charge -1

$$Z_{U(1)}^{\tilde{N}_{F}=N_{F}} = 2\pi \sum_{p=1}^{N_{F}} \left[z^{-iM_{p}} \overline{z}^{-iM_{p}} \frac{\prod_{s=1}^{N_{F}} \gamma(-i\widetilde{M}_{s}-iM_{p})}{\prod_{s=1}^{N_{F}} \gamma(1+iM_{s}-iM_{p})} F_{p}(z) F_{p}(\overline{z}) \right]$$

$$q = e^{2\pi i \tau}$$

$$\tau = \frac{\theta}{2\pi} + i\xi$$

$$F_{p}(z) = N_{F} F_{N_{F}-1} \left(\frac{-iM_{p}-i\widetilde{M}_{1}\cdots-iM_{p}-i\widetilde{M}_{N_{F}}}{1+iM_{1}-iM_{p}\hat{\cdots}\hat{1}+iM_{N_{F}}-iM_{p}} \middle| z \right)$$

[1] Sum over isolated vacua (=Higgs branch roots) in the Higgs branch

- [2] Factorization occurs !
- [3] Vortex partition function (= 2d counterpart of Nekrasov's partition function)

Factorization of S² partition function :

G=U(1) with N_F chiral multiplets of charge +1 and N_F chiral multiplets of charge -1

[1] Sum over isolated vacua (=Higgs branch roots) in the Higgs branch

Factorization of S² partition function :

G=U(1) with N_F chiral multiplets of charge +1 and N_F chiral multiplets of charge -1

- Choosing a different Q-exact def. can localize the path-integral onto isolated Higgs vacua
- New SUSY saddle point configurations :

point-like (anti-) vortex at NP (SP) in <u>omega</u> background

[2] Factorization occurs !

[3] Vortex partition function (= 2d counterpart of Nekrasov's partition function)

Phase of GLSM

Due to the quantum correction, physics with $\xi_{ren} > 0$ can be analytically continued to physics with $\xi_{ren} < 0$, if θ is non-zero [Flop Transition]

Factorization of S² partition function :

G=U(1) with N_F chiral multiplets of charge +1 and N_F chiral multiplets of charge -1

$$Z_{U(1)}^{\tilde{N}_{F}=N_{F}} = 2\pi \sum_{p=1}^{N_{F}} \left[z^{-iM_{p}} \overline{z}^{-iM_{p}} \frac{\prod_{s=1}^{N_{F}} \gamma(-i\tilde{M}_{s}-iM_{p})}{\prod_{s=1}^{N_{F}} \gamma(1+iM_{s}-iM_{p})} F_{p}(z)F_{p}(\bar{z}) \right]$$

$$q = e^{2\pi i \tau}$$

$$\tau = \frac{\theta}{2\pi} + i\xi$$

$$F_{p}(z) = N_{F}F_{N_{F}-1} \left(\frac{-iM_{p}-i\tilde{M}_{1}\cdots-iM_{p}-i\tilde{M}_{N_{F}}}{1+iM_{1}-iM_{p}\hat{\cdots}1+iM_{N_{F}}-iM_{p}} \middle| z \right)$$

[1] Vortex partition function $F_p(z)$ is analytic across $\xi = 0$, if θ is non-zero !

Gauge/Toda Duality

Decoupling Limit of AGT Relation with surface operator

• Toda correlator with degenerate operator vs SQED₂ coupled to N_f flavors

Landau-Ginzburg (LG) Model, which involves

Twisted chiral multiplets Y coupled by twisted superpotential W(Y)

- SUSY saddle points : Y = const. over S² and all other fields vanish
- One-loop determinant : trivial in a sense that it is independent of Y

Result

$$Z_{S^2}^{\rm LG} = \int dY d\bar{Y} \ e^{-4\pi i lW(Y) - 4\pi i l\bar{W}(\bar{Y})}$$

N=(2,2) SCA at IR Fixed Points

Global part of N=(2,2) SCA

$$\{S_{\alpha}, Q_{\beta}\} = \gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, S^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} S_{\beta} \qquad [R, S_{\alpha}] = +S_{\alpha}$$

$$\{\bar{S}_{\alpha}, \bar{Q}_{\beta}\} = -\gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, Q^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [R, Q_{\alpha}] = -Q_{\alpha}$$

$$\{Q_{\alpha}, \bar{Q}_{\beta}\} = \gamma_{\alpha\beta}^{m} K_{m} + \frac{1}{2} C_{\alpha\beta} A \qquad [J_{m}, \bar{Q}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{Q}_{\beta} \qquad [R, \bar{Q}_{\alpha}] = +\bar{Q}_{\alpha}$$

$$\{S_{\alpha}, \bar{S}_{\beta}\} = \gamma_{\alpha\beta}^{m} K_{m} - \frac{1}{2} C_{\alpha\beta} A \qquad [J_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{S}_{\beta} \qquad [R, \bar{S}_{\alpha}] = -\bar{S}_{\alpha}$$

$$[J_{m}, J_{n}] = i\epsilon_{mnp} J^{p} \qquad [K_{m}, S^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{S}_{\beta} \qquad [A, S_{\alpha}] = \bar{Q}_{\alpha}$$

$$[K_{m}, K_{n}] = -i\epsilon_{mnp} J^{p} \qquad [K_{m}, Q^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} S_{\beta} \qquad [A, Q_{\alpha}] = -\bar{S}_{\alpha}$$

$$[J_{m}, K_{n}] = i\epsilon_{mnp} K^{p} \qquad [K_{m}, \bar{Q}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

Appendix

Restoration of Axial U(1)_R Symmetry at IR fixed point

There is a one-parameter family of SUSY theories on S², T[θ], related by axial U(1)_R rotation at UV

However, S² partition functions of T[θ] are all the same !

This result confirms in the S² partition function framework that the axial U(1)_R symmetry is **restored at IR**!

Part III

Application to String Theory

What are we probing ?

The most useful method in physics is to throw something at an object we want to understand

- Today we are probing "geometrical space"
- With "quantum string"

Why are we probing ?

Physics: Attempts to get a sensible 4-dimensional model, relevant to nature, from 10-dimensional string theory on small 6-dimensional space

Many physical observables (e.g. Yukawa coupling) in 4d theories are determined by how strings see the given 6-dimensional space.

Mathematics: the spectrum of quantum particle with spin solves many important mathematical problems of classical geometry

e.g. (Supersymmetric) de Rham Ground States Cohomology

What about quantum string then ? New Maths ?

What did we learn ?

1. Strings want to change the given geometry until they become happy,

$$\frac{d}{d\mu}g_{ij} = -R_{ij}$$

2. They are happy in a space with $R_{ij} = 0$ known as "Calabi-Yau manifold"

Can deform it in two different ways

- change of size: Kahler moduli
- change of shape: Complex structure moduli

3. There are quantum corrections to classical geometry, suppressed by string size I_s , arising from point-particle approximation of string

2-Dimensional Theories

String which probes the six-dimensional Calabi-Yau space can be studied by 2-dimensional theories. (world-sheet theory)

1. $\frac{d}{d\mu}g_{ij} = -R_{ij}$: nothing but the renormalization group (RG) flow

2. Calabi-Yau space ($R_{ij} = 0$) is a fixed point of RG flow. Kahler/Complex Structure moduli can define a "space of RG-fixed points"

It is important to know the metric on the space of RG-fixed points

3. Most Challenging Problem

How to compute quantum corrections to the metric on the space of RG-fixed points ?

A solution is the celebrated Mirror Symmetry

Mirror Symmetry

Calabi-Yau manifolds come in pairs. Strings see the two manifolds as the same, although mathematician saw them differently

However, there are not many known examples (well ∞ , but still not big enough)

Recent Progress: A New Method

The exact S² partition function provides a direct and powerful method to compute both perturbative and nonperturbative quantum corrections without use of mirror symmetry

$$Z_{S^2}(\text{GLSM}) = e^{-K(\tau,\bar{\tau})}$$

- Exact Kahler potential **K** encodes all quantum corrections to the metric on the space of RG-fixed points of 2D theories
- K also defines a new math: Gromov-Witten Invariant (Quantum Cohomology)
- Z_{S^2} is independent of complex structure moduli of CY_3 (= parameters in superpotential)

Recent Progress: A New Method

The exact S² partition function provides a direct and powerful method to compute both perturbative and nonperturbative quantum corrections without use of mirror symmetry

$$Z_{S^2}(\text{GLSM}) = e^{-K(\tau,\bar{\tau})}$$

1 1 . .

• K also defines a new math: Gromov-Witten Invariant (Quantum Cohomology)

$$e^{-K(t,\bar{t})} = -\frac{i}{6} \sum_{a,b,c} C_{abc}(t^a - \bar{t}^a)(t^b - \bar{t}^b)(t^c - \bar{t}^c) + \frac{\zeta(3)}{4\pi^3}\chi(X) \qquad t = \sum_{a=1}^{h^{1,1}(X)} t^a = \sum_{a=1}^{h^{1,1$$

Works for many known examples, for instance, a famous Quintic Threefold

2875, 609250, 317206375, 242467530000, ...

Examples

\tilde{N}_{m_0,m_1}	$m_0 \!=\! 0$	$1/_{2}$	1	$^{3/_{2}}$	2	$\frac{5}{2}$	3
$m_1 = 0$	-		56		0		0
$1/_{2}$		192		896		192	
1	56		2544		23016		41056
$\frac{3}{2}$		896		52928		813568	
2	0		23016		1680576		35857016
5/2		192		813568		66781440	
3	0		41056		35857016		3074369392
1/2		0		3814144		1784024064	
4	0		23016		284749056		96591652016
9/2		0		6292096		20090433088	
5	0		2544		933789504		1403214088320
11/2	_	0		3814144		105588804096	
6	0		56		1371704192		10388138826968
13/2		0		813568		277465693248	
15/	0		0	*****	933789504		41 598 991 761 344
15/2		0		52928		380930182784	
17/	0		0	200	284749056		93976769192864
11/2		0		896		277 465 693 248	
10/	0	0	0	0	35 857 016	105 500 00 1000	122 940 973 764 384
19/2		0	0	0	1 000 570	105 588 804 096	00.050 500 100.004
10	0	0	0	0	1 680 576	00.000 (00.000	93 976 769 192 864
21/2		0	0	0	00.010	20090433088	41 500 001 501 044
11 93/	0	0	0	0	23 016	1 704 004 004	41 598 991 761 344
23/2	0	0	0	0	0	1 784 024 064	10 200 120 000 000
25/-	0	0	0	0	0	CC 701 440	10 388 138 820 908
25/2	0	0	0	0	0	66781440	1 402 01 4 000 200
27/-	0	0	0	0	0	019 500	1 403 214 088 320
2'/2	0	0	0	0	0	813 568	06 501 650 016
29/-	0	0	0	0	0	100	90 991 097 010
23/2	0	0	0	0	0	192	2 074 260 200
15 31/-	0	0	0	0	0	0	3 074 369 392
31/2		U		0		0	

Predicts new results of GW invariants for CY_3 's whose mirrors are unknown !

Table 4: Predictions for genus zero Gromov–Witten invariants of the determinantal GN Calabi–Yau threefold Y.

Why does this formula work?

New Solution

Proof I (Warm-up) [Gomis,S.L]

LG theories with twisted superpotential W(Y), which describe N=(2,2) SCFTs

$$Z_{S^2}[\mathrm{LG}] = \int dY d\bar{Y} \ e^{-4\pi i lW(Y) - 4\pi i l\bar{W}(\bar{Y})}$$

[Cecotti]

$$e^{-K(\tau,\bar{\tau})}$$

New Solution

[1] SUSY theory on squashed two-sphere S_b^2 : $\frac{x_1^2 + x_2^2}{l^2} + \frac{x_3^2}{\tilde{l}^2} = 1$

- Need a background gauge field V for $U(1)_R$ Symmetry
- Partition function on S_b^2 : independent of squashing parameter **b**

Mirror Symmetry

Hori-Vafa Method: Abelian GLSM vs Landau-Ginzburg model

• T-duality (scalar-scalar duality)

$$\partial_i \varphi = \epsilon_{ij} \partial^j y$$

NB: Chiral multiplet $\Phi \longleftarrow$ Twisted chiral multiplets **Y**

• Nonperturbative effect: dynamically generation of (ADS-type) twisted superpotential W

$$W = e^{-Y}$$

Examples

• Non-compact toric Calabi-Yau:

GLSM: G=U(1), n chiral multiplets of charge Q_a (a=1,2,..,n)

LG: n twisted chiral multiplets $Y=Y+2\pi i$ with $W = -\frac{1}{4\pi} \left[\Sigma \left(\sum_{a=1}^{n} Q_a Y^a + 2\pi i \tau \right) + i \sum_{a=1}^{n} e^{-Y^a} \right]$
Mirror Symmetry Revisited

Non-compact toric CY₃

GLSM: G=U(1), n chiral multiplets of charge Q_a (a=1,2,..,n) with $\sum_{a} Q_{a} = 0$ LG: n twisted chiral multiplets Y=Y+2 π i with $W = -\frac{1}{4\pi} \left[\Sigma \left(\sum_{a=1}^{n} Q_{a} Y^{a} + 2\pi i \tau \right) + i \sum_{a=1}^{n} e^{-Y^{a}} \right]$

$$Z_{S^2}^{\text{GLSM}} = \sum_{B \in \mathbb{Z}} e^{+iB\vartheta} \int d\sigma \ e^{-4\pi i r \sigma \xi} \prod_{a=1}^{n} (-1)^{\frac{|BQ_a|+BQ_a}{2}} \frac{\Gamma\left(\frac{1}{2} |BQ_a| - i r Q_a \sigma\right)}{\Gamma\left(1 + \frac{1}{2} |BQ_a| + i r Q_a \sigma\right)}$$
$$\prod \int_{-\infty}^{+\infty} dx \ e^{-qx} J_\alpha(2e^{-x}) = (-1)^{\frac{|\alpha|-\alpha}{2}} \frac{1}{2} \frac{\Gamma\left(\frac{q}{2} + \frac{1}{2} |\alpha|\right)}{\Gamma\left(1 - \frac{q}{2} + \frac{1}{2} |\alpha|\right)}$$

$$\begin{split} Z_{S^2}^{\mathrm{LG}} &= \sum_{B \in \mathbb{Z}} \int_{-\infty}^{\infty} d\sigma \int_{-\infty}^{\infty} dx^a \int_{-\pi}^{+\pi} dy^a \ e^{+2ir\sigma(Q_a x^a - 2\pi\xi) + iB(Q_a y^a + \vartheta)} \cdot e^{2ie^{-x^a} \sin y^a} \\ &= \int d\Sigma \, d\bar{\Sigma} dY_a d\overline{Y}_a \ e^{-4\pi i rW - 4\pi i r\overline{W}} \end{split}$$

Mirror Symmetry Revisited

Compact CY₃: Complete intersection in toric variety

GLSM: G=U(1), n chiral multiplets of charge Q_a and U(1)_R charge q_a with superpotential *W*

LG: n twisted chiral multiplets $Y=Y+2\pi i$ with the **same** twisted superpotential W

$$W = -\frac{1}{4\pi} \left[\Sigma \left(\sum_{a=1}^{n} Q_a Y^a + 2\pi i \tau \right) + i \sum_{a=1}^{n} e^{-Y^a} \right]$$

Subtlety in choosing fundamental variables of mirror LG models

However, S² partition function can resolve the subtlety automatically !

Mirror Symmetry Revisited

GLSM: G=U(1), n chiral multiplets of charge Q_a and U(1)_R charge q_a LG: n twisted chiral multiplets with the **same** twisted superpotential W

$$Z_{S^2}^{\text{GLSM}} = \sum_{B \in \mathbb{Z}} e^{+iB\vartheta} \int d\sigma \ e^{-4\pi i r \sigma \xi} \prod_{a=1}^{n} (-1)^{\frac{|BQ_a|+BQ_a}{2}} \frac{\Gamma\left(\frac{q_a}{2} + \frac{1}{2} \left| BQ_a \right| - i r Q_a \sigma\right)}{\Gamma\left(1 - \frac{q_a}{2} + \frac{1}{2} \left| BQ_a \right| + i r Q_a \sigma\right)}$$

$$\int_{-\infty}^{+\infty} dx \ e^{-qx} J_{\alpha}(2e^{-x}) = (-1)^{\frac{|\alpha|-\alpha}{2}} \frac{1}{2} \frac{\Gamma\left(\frac{q}{2} + \frac{1}{2} |\alpha|\right)}{\Gamma\left(1 - \frac{q}{2} + \frac{1}{2} |\alpha|\right)}$$

$$Z_{S^{2}}^{\text{GLSM}} = \int d\Sigma \, d\bar{\Sigma} \int \left[\prod_{a=1}^{n} dY_{a} d\bar{Y}_{a} e^{-\frac{q_{a}}{2}(Y^{a} + \bar{Y}^{a})} \right] e^{-4\pi i W(Y) - 4\pi i \overline{W}(Y)}$$

Fundamental
LG variables $X_{a} = e^{-\frac{q_{a}}{2}Y^{a}}$

New Idea in Mirror Symmetry

Mirror beyond toric ? [Hori,Vafa] method (due to T-duality) cannot extend to 2D non-abelian GLSM describing CY_3 beyond toric variety

e.g. G=U(N) with chiral multiplets in rep. R

Complete-intersection in Grassmannian mfd.

S² partition function of 2d non-abelian GLSM can be computed exactly

Same as the S² partition function of a following Landau-Ginzburg model

$$Z_{S^{2}}^{\text{GLSM}} = \frac{1}{|\mathcal{W}(G)|} \int \left[\prod_{j=1}^{\operatorname{rk}(G)} d\Sigma_{j} d\bar{\Sigma}_{j} \right] \left[\prod_{\rho \in \mathbf{R}} dY^{\rho} d\overline{Y}^{\rho} \right] \prod_{j < k} |\Sigma_{j} - \Sigma_{k}|^{2} e^{-4\pi i W - 4\pi i \overline{W}}$$
$$W = -\frac{1}{4\pi} \left[\sum_{i=1}^{\operatorname{rk}(G)} \Sigma_{i} \left(\sum_{\rho \in \mathbf{R}} \rho^{i} Y^{\rho} + 2\pi i \tau \right) + i \sum_{\rho} e^{-Y^{\rho}} \right] \quad \Leftarrow \qquad \begin{array}{l} \text{Nontrivial evidence of Hori-Vafa conjecture !} \end{array}$$

N=(2,2) SUSY on S²

SUSY on Two-Sphere: SU(2|1)

• Subalgebra of N=(2,2) SCA:

$$\{S_{\alpha}, Q_{\beta}\} = \gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, S^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} S_{\beta} \qquad [R, S_{\alpha}] = +S_{\alpha}$$

$$\{\bar{S}_{\alpha}, \bar{Q}_{\beta}\} = -\gamma_{\alpha\beta}^{m} J_{m} - \frac{1}{2} C_{\alpha\beta} R \qquad [J_{m}, Q^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [R, Q_{\alpha}] = -Q_{\alpha}$$

$$\{Q_{\alpha}, \bar{Q}_{\beta}\} = \gamma_{\alpha\beta}^{m} K_{m} + \frac{1}{2} C_{\alpha\beta} A \qquad [J_{m}, \bar{Q}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{Q}_{\beta} \qquad [R, \bar{Q}_{\alpha}] = +\bar{Q}_{\alpha}$$

$$\{S_{\alpha}, \bar{S}_{\beta}\} = \gamma_{\alpha\beta}^{m} K_{m} - \frac{1}{2} C_{\alpha\beta} A \qquad [J_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{S}_{\beta} \qquad [R, \bar{S}_{\alpha}] = -\bar{S}_{\alpha}$$

$$[J_{m}, J_{n}] = i\epsilon_{mnp} J^{p} \qquad [K_{m}, S^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} \bar{Q}_{\beta} \qquad [A, S_{\alpha}] = \bar{Q}_{\alpha}$$

$$[K_{m}, K_{n}] = -i\epsilon_{mnp} J^{p} \qquad [K_{m}, Q^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} S_{\beta} \qquad [A, Q_{\alpha}] = -\bar{S}_{\alpha}$$

$$[J_{m}, K_{n}] = i\epsilon_{mnp} K^{p} \qquad [K_{m}, \bar{Q}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} S_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{Q}_{\alpha}] = -S_{\alpha}$$

$$[K_{m}, \bar{S}^{\alpha}] = -\frac{1}{2} \gamma_{m}^{\alpha\beta} Q_{\beta} \qquad [A, \bar{S}_{\alpha}] = Q_{\alpha} .$$