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Abstract

Some basic aspects of quantum anomalies are discussed.

1 Introduction

The history of quantum anomalies started in 1949, immedi-
ately after the formulation of modern quantum field theory
by Tomonaga, Schwinger and Feynman. The original indi-
cation of chiral anomaly was first recognized by Fukuda and
Miyamoto in their calculation of the radiative decay of the neu-
tral pion. This problem was further studied by Tomonaga and
his collaborators in Tokyo and Steinberger at Princeton. The
anomalous behavior was not eliminated by the Pauli-Villars
regulator which was introduced around that time. Schwinger
also analyzed the problem some time later.

This problem was re-discovered in 1969 by Bell and Jackiw
at CERN and Adler at Princeton. The notion of soft-pion
was well-established at that time, and also the spontaneous
symmetry breaking of chiral symmetry by Nambu was gradu-
ally gathering suport among particle physicists. The notion of
quantum anomaly became prominent in connection with the



develeopments of the Standard Model initiated by the works
of 't Hooft in 1971. The notion of anomaly played further fun-
damental roles in the developments of superstring theory in
1980s.

From the point of view of mathematics, the Atiyah-Singer
index theorem was established around 1969, about the same
time as the modern developments of quantum anomalies. The
ghost number anomaly which appears in the first quantization
of relativistic string theory was later recognized as a manifes-
tation of Riemann-Roch theorem in the theory of Riemann
surfaces. In fact, it is said that the Atiyah-Singer index theo-
rem itself is a result of efforts to generalize the Riemann-Roch
theorem to dimensions higher than 2.

2 Chiral anomaly and the radiative decay of the
neutral pion

We consider the decay of a massive pseudo-scalar particle P
into a pair of photons in the Lagrangian given by (in the nat-
ural units ¢ = h = 1),

£ = G(@)fi7* Dy~ ml(z) + 5(0,P(2)0" Pla) ~ p* Plaf)

+ 2m P (e)ivs(a) — P 2.1)

where D, = 0, —ieA,, and a coupling constant g. The field 1
is a charged fermion and may be regarded as a proton in this



primitive model. The above lagrangian is equivalent to
- 1
L = P(@)[iv" Dy — mp(x) + 5[0, P(x)0" P(x) — p*P(x)

_ g@MP(:U)zﬁ(:U)*y“%w(x)—i Wl 2.9)

if one uses the free equations of motion [0, — m|y(x) = 0
for the fermion 1) in the spirit of interaction picture.
The decay of the pion P(z) into a photon pair

P(p) = Aalk) + Ap(l) (23)

takes place through fermion triangle diagrams in the lowest
order in perturbation theory. Starting with the Lagrangian,
we evaluate the two Feynman diagrams such as
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One may now use
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then the above expression is replaced by
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The second group in (2.6) is rewritten as
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by using the relation
{75,7"} = 0. (2.8)

[f one replaces the integration variable as g* — ¢ — k" in the
3rd term and as ¢g* — [ — ¢" in the fourth term, respectively,

then one can conform that all the terms cancel each other in
(2.7). Eq. (2 4) is thus replaced by
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which establishes the equivalence of (2.1) and (2.2).
However, Fukuda and Miyamoto recognized that the com-
bination (2.7) does not quite vanish, namely, the naive shift
of the integration momentum is not justified in this linearly

divergent integral. One of the ways to see this subtlety is to
use the Pauli-Villars regaularization which amounts to add a

bosonic massive fermion to the Lagrangian
o 1
L = @iy Dy = mlip(w) + 5[0, P(2)0" Plw) — p” P(e)]
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Eq.(2.4) is then replaced by
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namely, the massive fermion contributions have relatively mi-
nus signs due to the bose statistics of the massive bosonic



fermion W. The equivalent expressions (2.9) are now replaced

by
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where the divergent terms in (2.7), which are independent of
masses, cancel among the fermion 1) contributions and the
regulator W contributions (note that the non-ambiguous parts
cancel among themselves in any case). This is the essence of
the Pauli-Villars regularization for the fermion fields.

The expression (2.11) defines the reqularized axial-vector
current and the second term in (2.12) gives a possible extra
term in the limit M — oco. The evaluation of the second term
in (2.12) proceeds as
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We evaluate the first term by using
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(¢)? = DP
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D=k’ —y)+ (k+D*2* = 2) + M?
¢ =q—ky—(k+1)z
g=q+ky+(k+lz=q¢+a (2.15)

The numerator is evaluated by keeping the antisymmetrization
by Trysy*y"~y? = 4ie"*% in mind.

Teys[( )7 (= " + (D (= K= D+ (d= )Y (= D)
= Trys (A (= 7" + (DY (= k= D+ (d— §)7" (= )
= Trys[—z B K —y By V+ (L —y— 2" 7 )
= —4ie* "y, (2.16)
where we used ¢ = ¢ + a and the terms linear in ¢’ vanish
after the integration over d*q’. We also use
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where we Wick-rotated the integration variable g), — iq) to
make —(q')? > 0.
The first term in (2.13) becomes

1 1
—8M2327T2 5 eI, A (k) Ag(l)
1
= —WEW%AZPA@(/@)A&(Z) (2.18)
where we used
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for M? — o0o. The total contribution is thus
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in the coordinate representation. The extra factor of 2 comes

e E, FL5(2.20)

from the contraction of external electromagnetic fields with the
variables in the anomaly.
In the operator notation, we have the anomalous relation
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2.1 PCAC and soft-pion

We write the model (2.1) in a slightly more realistic way as

£ = G(@)in Dy — ml(a) + 5[0, (0)0"x" () — 1 (x" (@))
+ 2gm 3 7 (@) ()i V(@) — Fu (222)
with Pauli matrices 7% and
W(z) = (28 ) . (2.23)
and
D, = 8, —ic ( (1) 8 ) A (z) (2.24)

Then the pion decay amplitude is given by
o2

3272

where the extra 1/2 arises from the isospin convention. If one

(Y|’ = g(y] o€ FuFapl0) /V2E  (2.25)

uses the Goldberger-Treiman relation
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we have
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It is known that this relation is good from an experimental
point of view.

To understand this relation from the point of view of PCAC,
we define the SU(2) current

a T 1 a
T5H(@) = 9l@) 37 s ) 2.29
then (by ignoring the anomaly, for a while)
a 1
0,J5" (z) = 2mp(z ) %51 () (2.29)
For the on-shell pion, we define the pion decay constant
(0| J5"(0) |7y = fap!"/V2E. (2.30)

Then PCAC means that the right-hand side of (2.29) is an
interpolating field of the soft pion

a L,
0, J5 " (x) = 2m¢(:€)27 ivs)(x) ~ m2 frpe(z)  (2.31)
for p# ~ 0.
In the presence of the anomaly, we have
2
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0,3 (x) = 2mi(a) 7 () +

Then we have

BB @)I0) = {rI2mi ()7 s () )
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VY| o €, Fos|0) (2.33)
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In the soft-pion limit p, — 0, the left-hand side goes to
zero. We thus have (by noting the reduction formula (p? —

m3)d=(p)|0 >= |7(p?))V2E)

2
L, Fapl0) (2.34)

frly|7 (p* = 0))V2E = <w!32 5

and assuming

(yy7’(m2)) = (yy|7"(p* = 0)) (2.35)
we get the correct decay amplitude
1 2 ro
(1 (m2)) = (01l 5 e F Fogl0)/V2E. (236)

In the picture of Nambu, the mass of the fundamental fermions
(quarks) m = 0, and we have

1

Jo' (z) = Slay" ysu — dy"ysd] (2.37)
and
9 J gy — © ol Fs 238

but the pion is massless m? = 0. Then we have

2

o3 U E,, Fapl0) (2.39)

0, (v s (2)|0) = (V]2
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In the soft-momentum limit p? — 0, we have symbolically
[ d*ze” " (47]0,,.J5" ()|0)

= (Im(p® = 0)V2E (0T (¢(—p)¢x(p))|0 > p*
= (7|7 (p* = 0))V2E [, (2.40)

or one may simply assume Jo*'(z) = f,0"¢.(z) in the soft-
momentum limit, and we get the same result as above.

3 Gauge invariant regularization of currents

We now discuss the above evaluation of Feynman diagrams
form a slightly different point of view. We regularize the cur-
rent in a gauge invariant manner and evaluate the anomaly
without recourse to Feynman diagrams. This scheme later
leads to the evaluation of anomaly as the Jacobian in path
integral.

To make this analysis better defined it is important to con-
sider the Euclidean theory by Wick rotating the Minkowski
quantities.

20— —ix
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and regard z* and p, as real quantities. The basic idea is to
keep the inner product invariant under this rotation such as

3 4
p= > VY'pu= > Yy,
1=0 p=1
4
V(O — teA,(2)]3.2)

1

P =3 A0, —icAx)) =
©=0

I

but the metric is changed as

guy=(1,-1,-1,-1) - g, = (-1, -1, -1, —-1) = g"”

and

(YT ==, {3y} = 29"" (3.4)

In this notation, the Dirac operator P = +*(9, — ieA,(z))
becomes hermitian for the SO(4) invariant inner product

(0, V) = [d'2¥(x) PU(z)
= [d'=(P¥(x))" ()
= (DY, V) (3.5)

The path integral, which is explained later in more detail, be-
comes

| DUDYDA, exp{i [ d*z[¢(i P — m)y — iFWFW]}

— [ DEDYD A exp{ [ d'ali(i 1 — m) — {Fou ™}
(3.6)

13



Note that F),, F'*" is positive definite in Euclidean metric and
thus the path intregral is better-defined.
We now define the axial-current

(5 () = Im(T"(y)y" 50 (x))

- — ?}%<T*(7“75¢(I))Q@E(y)a>

_ 1
— iyt — )

(3.7)

where the trace stands for the sum over the spinor indices.
Here we used

T o)) = ('@ =) (33
We now use the relations
1 1
i@—m_iﬁfeﬂ(az)—lm 1
T @—m_z’ @—meé{(x)i d—m
+z’ ﬁl_meé?((x)Z ﬁl_meé{(:v)z @1—m + ..
(3.9)
and
d* :
S x—y) = | (2754@%@—@ (3.10)
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we have

d* . w1
<]g(x)> _ /(275462%461,,}/#7 [ al G’Yaelkmz. ﬁl_ me,yﬁezla:i @ -
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and similarly
” B d4q 1 1 1
1 I} 1 ,yoz 1 ]A ( ) zk‘xA l)ezlx
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and this mass term is explicitly evaluated as
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= "N\ F,
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for the large m, and we defined
Ay(z) = Ay(k)e™ + A, (1)e™ (3.14)

by assuming two frequency modes which are sufficient for our
calculation. This decay amplitude through the mass term,
which is different from the anomaly and given here just for
an illustration, is (—1) times the anomaly given by the Pauli-
Villars regularization.

The above definition of currents thus reproduces the results
of Feynman diagram calculations.

Our definition of the current can also be written as

GE@) = Jim 5@ = )}

= 5 (15 (@) el
=Z%Uv%ﬁi%@
— Z¢n( )7 V5 )\ _ ¢n( ) (3'15)

by using the complete orthonormal set

[ d' 2} (@)dm(x) = mn,
% gbn(aj)ﬁgbn(y)jy — 5&554(:6 - y) (316)

16
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of eigenfunctions of the hermitian operator 2. Since the eigen-
value A, of J) is gauge invariant, as is seen under the gauge
transformation generated by U(w),

Uw) PU(w)" =P/ (3.17)

then

P'(U(w)gn(x)) = Ulw) Pén(x) = U(w)Agn(z) = MU (w)dn()).
(3.18)

We can thus regularize the current in a gauge invariant manner
by (gauge invariant mode cut-off)

(75 (2))con = Zn: ¢n(x>T'YM75Z.)\n — me‘gz/MQ)Cbn(x)
(3.19)

with any smooth function f(x) with a large cut-off mass M,
and

f0)=1,

ZUf/(.CC |:E:O - 07

f(o0) =0,

2 ()] 1200 = 0 (3.20)
such as

flz)=¢€"". (3.21)
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We then have

04 = X 0ubula)y s

an()\i/MQ)(ﬁn(x)
1

+¢n ()15 Y —— [0/ M) D)
= S (Ponla) gy SR o)

0@ 955 SO/ P (o)
= >[-2¢u(x)!7"s

A
o /M) 6 ()
= 2mi o)

+20 5 () s f (AL /M) g0 (2)

fFOL/M?) ()
= 2mi<j5<x)>cov + 21 %: qbn(x)T%f()\%/Mz)qbn(:L‘)
(3.22)

The gauge invariant regularization of the current thus auto-
matically produces an extra term

2% $u(@) ' (AL /M?)fu(x) (3.23)

We extract the gauge field dependence from this expression as
follows:

)15 f (AL /M) fu(2)

S 6u(2)'y
= 5 0u(0) 15 f (P2 M) ()
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. tl”/ —zk:n,y f pQ/MQ) ikx (3_24)

where trace stands for the Dirac indices. We assumed that the
operator s f(1D*/M?) is well-regularized and transformed the
basis set to the complete set of plane waves. Namely

d*k
> —trf o) (3.25)
We also note
JDQ = ’YM’YVDHDV
1 1% 1 14
— 2{7'“7 Y }DuDl/ + 2[7/#7 Y ]D,UDV
14 1 1%
= ¢""D,D, + 4[7M Y HD/MDV]
1% . 1 14
= ¢""D,D, — 264[7“,7 | F (3.26)
where we used
[D/m D, = —iel), (3.27)
We thus have
d4k —Z LU 1R
tr/ ke JDQ/MQ) ke
d4k 1

—tr/

e (6" DDy — ey, 7 Fy) /M)
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d*k g"(ik, + D,)(ik, + D,) . 1

—tr/ 47f Ve te " 1Ew)
d4k , D, D, 1 ,
—M4tr/ )475]“( " (ik, +M)(zk: +M)—264M2[7”,7 | )
(3.28)
where we re-scaled the integration variable
k, — ME,. (3.29)
We then expand
, D, D, 1 ,
f(g" (iky, "‘M)(Zk +M)_Z€4M2[’YM77}FW>
= f(_gwku]@)
1% 1% . . 1 14
+f(=g" kuk,){g"" (2ik, D, /M + DMDV/M2) - Ze4]\42 Y 1 F )
1 , ) 1 v
+2!f”( gk, k,){g"" (2ik,D,/M + D DV/Mz) — 264M2[’y“,’y ]Fuv}2
1 , , 1 v
+3!f”’( g k,k,){g" (2ik,D,/M + D,D,/M?*) — e " |F,,}°
1 1
i (=g Kk g 20Dy /M + DDy MP) = e, Fyu ¥

(

We now observe that the trace with 5 = v*y!v?~3 requires at

least 4 Dirac y matrices with the powers in 1/M* in the limit
M — oco. We thus have the unique term

d*k D, D, 1

>4v5f( Y(ik, + =5 (ik, +)—Z€4M2

M4tr/ i, i

Y1 F )
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d‘k 1 1

- M4tr/ 4752'][‘ (_gﬂykﬂky>{_7’e4M2 [fylu7fyy]F/~LV}2
o2 - d4k 1 o
—~ —16151"{%[7 AN E A7) aﬁ}/ ki, )(3.31)

We now evaluate

tr{vs [V, V) Fu [y, 77 Fagt = =166 F,, F,5  (3.32)

for
V5 = V4V17273 (3.33)
which is the same as the Minkowski convention and
{757 ,y,u} — 07
et =1, (3.34)
We also have
d‘k 1,
- N7 . "
/ (2m)4 2] (=9 kuk) = 327r2 fy deaf"(@)
= 3%2/000 dr(—f'(z))
1
= — 3.35
3272 (3:35)
with v = — — ¢"k,k, > 0, and
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independently of the regularization functlon f(z) for large M.

ewﬁFWFaﬁ (3.36)
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We thus have the anomaly relation

62

3272

Sl P
(3.37)

au<jg(x)>cov - 2mi<j5(x)>cov+2i

The result of Minkowski space is obtained by removing the
imaginary factor ¢ from the anomaly term and

61230 = €0123 — 1. (338)

These two relations are valid even for the non-Abelian gauge

field if one defines

Aulz) = AZ(@T&a

Dy = 0, — igAu(z),

Dy, Dy) = —igky,

= —igT"F}, = —igT"(0,A, — O Ay + gf ™ AL AS)

(3.39)
with the structure constant
T TV = g fabere,
tr7T" = ;5@5. (3.40)

Then

2

> 6u(2) s f M) bue) = e Fy Fo (341
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where tr stands for the trace over Yang-Mills freedom, and
2

O @ = 2mi{js) enn + 2

27T2tre“mﬁFWFa5

(3.42)

In the presence of the instanton solution of the Yang-Mills field

we have
2

v= [t 3972

and the Atiyah-Singer index relation
ng—n_ = [dz¥ ¢n($)W5f (A/M?) ()

— / d'zy tre“”o‘ﬁFWFa@
= (3.44)

2 _treF,,F,5 = integer (3.43)

Here we used
Dén(x) = Non(2),
Dyson(x) = =X y50n(x) (3.45)

using s I = — Dvs. Namely, ¢, (x) and v5¢, () are orthog-
onal for A\, # 0

/d%(ﬁ (2)y50n(x) = 0, for A, # 0. (3.46)
On the other hand, for A\, =0
pgbn('x) — 7
Dyspnlz) = (3.47)
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namely
(14 7s)

p 9 gbn(iﬂ) =0 (348)
Thus we can choose the eigenstates of chirality s,
1+
¢)\n:()($)i = ( 275>¢)\n:0(37)7
V5Dr,=0(T)+ = Edx,—0(T)+. (3.49)

We thus evaluate
[ A0S Gu(@)lys N/ M) ()

= /d437 Zn: ¢An=0(ﬂf)1t%f<0)@n=o(ﬂ3)i

= n, —n_ (3.50)
where n4 stand for the number of normaizable eigenstates with
vanishing A\, = 0 and chirality 41 in the background of topo-
logically non-trivial Yang-Mills field. This number n, —n_ is
called "index” associated with the operator .

Intuitively, the square matrix M =I), which has a vanishing
index, is deformed to a rectangular matrix with a non-trivial in-
dex in the presence of the topologically non-trivial background
gauge field;

index = dim kerM — dim kerM"
— dim kerM'M — dim kerM M' (3.51)

where ”dim ker” counts the number of normalizable eigenstates
with the 0 eigenvalue.
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[t is important to recognize that the chiral anomaly, which
may be called "a local form of index”, is valid even for topo-
logically trivial gauge fields, such as d = 4 Abelian gauge field.

4 Path integral and Ward-Takahashi identities

The (Euclidean) path integral for QED is defined by the vaccum-
to-vacuum transition amplitude in the presence of localized
source terms

(0/0), (4-1)
— /D@sz[DAM] exp{/ d'z[p(i P — m)y — leFWFW + 7Y + Y}

where [D A, includes the gauge fixing and compensating terms,
which are not essential for the analysis of chiral symmetries.
The last two terms with the classical (Grassmann) source 7
stand for the source terms essential in the Schwinger’s action
principle. The fermionic variables including source terms are
all Grassmann numbers. We treat ¢ and 1 as independent
variables in path integral. The Grassmann numbers are defined
as totally anti-commuting ”classical numbers”. For example

(w)(y) +(y)p(x) =0,
b(x)b(y) + (y)v(z) =0,
P(@)(y) + (y)v(x) =0,
b(x)n(y) +ny)y(z) =0, (4.2)
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in particular,

v(@)p(x) + (x)(r) = 20(x)P(r) = 0 (4.3)
namely, the Grassmann numbers have no magnitude.
The path integral measure is defined by left-derivative

)
=1y w

where the product runs over all the points of Minkowski space

(4.4)

or Euclidean space R*. The left-derivative means, for example,

o [ o) = < [ =on)
= i) (45)
where we used
o) = 8 =) (46

if one writes the spinor index explicitly. Namely, we first move
the variable which is integrated (in fact, differentiated) to the
left of all the rest of the variables, and then perform the dif-
ferentiation.

The left derivative satisfies the condition of linear projec-
tion from Grassmann numbers to complex numbers, which is
defined as "integral”.

The Schwinger’s action priciple states that

5 )
W@!O% = (0]¢(x)[0),, (4.7)
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and the quantized equation of motion is given by (by treating
the gauge field as a background for a moment)

(0[( P — m)() +n(2)|0), =0 (4.8)
and thus the vacuum-to-vacuum amplitude (0|0),, should sat-
isfy

0
(G —m)s s 57(z) +n(x)](0[0), = 0 (4.9)
In fact, the path integral representation satisfies this condition
| DYDY[DA{(i P — m)y(x )+77(£U)}

Xexp{/d:c i P — m)@D—*FyFW+77¢‘|‘1E7ﬂ}:
(4.10)

Note that all the variables are classical variables in this expres-
sion. We rewrite this path integral as

| DYDY[DA,] (4.11)
X 5@;156) exp{ [ d'z[ip(i P —m)y — iFwF’“‘” + i +1m)} =0
To prove this relation, we start with the identity
| DYDY[DA,] (4.12)
x exp{ [ d*z[(i P — m) — iFWFW + i+ )}
= | DY'DyY[DA,]
x exp{ [ d*z[' (i P — m)¢—fFWFW+77¢+¢ 0/}
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which is analogous to fdx f(x) = f dy f(y). We choose

P(x) = () + €(z) (4.13)
for any fixed function €(z) independent of (). We can con-
firm

D = T
v 0/ (x)
0

I —
e
= Dy (4.14)
Namely, the path integral measure is translational invariant
in the functional space

D + €) = Dy (4.15)
which ensures the equation of motion of quantized theory, as
is seen from (4.12) as

| DYDY[DA,] (4.16)
X eXp{/ d'z[p(i P —m)p — *F M i 4 )}
= [ DyDyY[DA ]

xexp{/d4 E m)lﬁ—*FwFW‘Fmﬂ‘Hﬁ ]}

by expanding the exponential factor in the second expression
in powers of €.

| DUDY[DA N [ d'yle(y)(i P — m)y(y) + e(y)n(y)]}
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< exp{f dalii P —m) — TFu P+ s+ ) = 0.
which implies

| DEDUDAI(i P — mpb(a) + n(a)} (4.17)

X exp{ [ A0 P — m) — {FuF* 47+ g} = 0

by differentiating by €(z). This shows tha equation of motion.

We next analyze the Ward-Takahashi identity by taking the
chiral symmetry as an example. The chiral symmetry is defined
by the transformation of variables by

Ua) = v(x) = (),
Uz) = /() = Pa)e ™,
(4.18)

with an infinitesimal «. Under this transformation, the Dirac
action is invariant except for the mass term

J e’ (i P —m) = [ d'ap(i P —m — 2iamys)y
(4.19)
by noting vsv* 4 y#v5 = 0.
To derive Ward-Takahashi identity, we use a localized pa-
rameter

lx) =/ (x) = Py (),
Y(a) — (@) = P(x)e s,
(4.20)
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and start with an identity

| DYDY[DA,] (4.21)
X exp{/ d'zfp(i P — m)y — iFWFW + 7Y + Y}
= [ DYDY [DA ]

x exp{ [ d*z['(i P —m)y' — fFWFWanw + ')}
The action then changes
/d4 p m)w_*F/wFMV"an +¢ ]

= [&algi P~ m — Fu P 4 0+ (4.22)
— O a(x) Py s — 2ia(x )mw +ia(@) s + i)y

By considering terms linear in «(x) and assuming the absence
of the Jacobian in the path integral measure,

DYDY = DyYD, (4.23)
we obtain the (naive) identity
| d'x(=0ua(@)y" s — 2ia(w)map) + (@)t + i) ysn)y
or

(Oul (@ ystp(2)] = 2imab(@)ysib(x) + in(z) ¥ (x) + idb(z)rsn(z))y
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where the path integral symbol is implicit. By taking the
derivative of this relation with respect to 5775@5775@ and set-
ting all the source terms to be zero, we obtain the well-known
naive chiral W'T' identity

(T Ol ()7 150 ()] (y) () — 2imap(a)yse) ()i (y) e (2)

+id(2 — y)yseo(2)1(2) + i (y)(x)ys0(z — 2)) = 0
(4.26)

for the two-point Green’s function

(T (y)h(2)) (4.27)

Now we evaluate the Jacobian carefully. For this purpose,
we define the path integral measure more precisely by expand-
ing the path integral variables in terms of the complete set of
eigenfunctions

[ d'zol(z)pm(x) = S m, (4.28)
9(1) = S an60(x) = Saln)an,
Y(x) = ;5 ol (z) = ;5n<n!w> (4.29)

To be precise, we may write (x, a|n) by including spinor in-
dices. Now the dynamical variables are a, and b,, which are
Grassmann numbers. Note also that the space-time symmetry
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in Eucliden theory is SO(4) instead of SO(1, 3) of Minkowski
space. The above change of the integration variables is unitary
in the sense of Dirac, and we have

Dy = ];[5?;@) = det|(z|n)| ™ E[(ﬁn = det|(z|n)| ™ ];[dan
(4.30)

and similarly

s B
Dy = 1;[5&(33) = det|(n|z)] ];L[

0
by

— det|(n|x)| I db,
(4.31)

Note the appearance of the inverse of the ordinary Jacobian for
complex numbers, since we define the integral by left-derivative
for Grassmann numbers.

We thus have
DYDY = det|{n|z)| 'det|(z|n)|" 1} db,, 1;[ day,
= det] /d4x<n]a:> (z|m)| " 1 db, II da,
= det|d, | 11 db, I1 day, ' '
= 1I db, 1 dgn : (4.32)
and the Dirac action becomes
[d* (i p — m)y = > (i, — m)by,a, (4.33)
and the fermionic path integral

| DYDY exp{ [ d'z[yp(i P — m)y]}

32



= [1db, I da, exp{>(i\, — m)b,a,}
= I1(i\, — m)
= det|i ) — m| (4.34)

The definition of det|i [ — m| is given as a product of all the
eigenvalues of the operator. Our evaluation of the quadratic
(Gaussian) fermionic path integral is exact.

We can use this definition to evaluate the possible Jacobian
of the (infinitesimal) chiral transformation:

() = e*Bp(a) = (1 +ia(z)ylo(e)  (435)
1s written as
V(@) = S adn(x) = S an[L + ia(2)ys)én(z)  (430)
namely,

a, = %am/dllxqﬁ;(aj)[l + i () Y5 Pm(T) (4.37)

[Ida), = det| /d%gb};(:c)[l + i) y5) ()| gdam
— exp[—i%:/d4xgb;rl(:v)a(a:)75q5n(x)] gdam (4.38)

where we used the fact that the variables {a, } are Grassmann
numbers and also the general relation

det| M| = exp[TrIn M] (4.39)
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det| [ d'z¢}(x) (1 + ial@)y5) ()| !
= exp{—TrIn[[ d*z¢] (z)(1 + ic(z)y5) P ()]}
= exp{—TrIn[d m+z/d4$§bT T)a(2)y5Pm ()|}
= exp{—l/d ZUQb:[L Jo(x)v50m ()] } (4.40)

for an infinitesimal a(z).
Similarly we have

=3 Din /d%ng W+ ia(x)ys)on () (4.41)
and
[Tdb, = det| [ d'zg],()[1 + ia(z)ys]én(z)| " T db
— exp[—z'%:/déla;gbjl(x)oz(a;)%gbn(x)] gdbm (4.42)
We thus have
Il dv/, 1 dal, = J(a) 1 db, 11 da, (4.43)

n
with the Jacobian factor

T(a) = exp[~2 . [ d'ad](@)ale)sou(@)]  (444)
This Jacobian contains the information about the anomaly, as

is seen by choosing a(x) = constant and using the index
relation for Yang-Mills field

J(a) = eXp[—Qizn:oz/d%(/b%(a:)'yg—)gbn(x)}

= exp|—2ia(ny — n2)]

= exp| 2za/d4 972 tre““aﬁFﬂyF@g] (4.45)
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For general case, we evaluate the Jacobian using our previous
calculation as

J(e) = lim exp[=2i3 [ d'za(z)d}(2)ysf (A5 /M) ()

= exp[—2i/d4xoz( ) J tre“”o‘ﬁF v Eop] (4.46)

3272

which is valid for the Abelian case also if one removes the trace
over Yang-Mills indices.

The WT identity is derived from

| DYDY[DA,] (4.47)
xexp{/d z[Y(i P — m)w—*FWFW‘H?lﬁ"‘W?]}
= [ DY'DY/[DA,]

x exp{ [ d*z[' (i P — m)y’ — jtFWFW + )+ ]}
with

DyY'DyY’ = J(a)DyDep (4.48)

and for example,

(T{Oul )y vt ()] (y)(2) — 2imab(x)y52) ()3 (y)e) (2)

e2

~2i e P @) ()2

+id(x — y)ysh(2)(2) + i (y)P(r)rs0(r — 2)}) =0
(4.49)
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or in the operator notation

2
Oplth(2)y" 59 ()] = 2imp (@) ys(x) + Qi?)gﬂﬁwaﬁFwFaﬁ(x)
(4.50)

5 Anomalies in gauge symmetry

The formula for the Jacobian is valid for any gauge symmetry
including the general coordinate transformation. For example,
one may consider

S = [ d'zi(z)iy" D,ab(x) (5.1)

with
D, =8, — iV (x)T* — i A%(x)T"s (5.2)

and
[T, 1% =4 fobere. (5.3)

This theory is invariant under the gauge symmetry

V() = Ular, B4 () = explia (@) T + insfd" (@) T} (),
§'(x) = 9()U (e, 6) = 9() expl—ia (@)T" + ins3"(@)T"),

V(O — iV (@) T — 1A () T"ys)

= P explia®(@)T + i3 @) T8y — V2 (@) T — A% (2)T"s)
x exp|—ia®(x)T* — ivys 3 (x) T (5.4)

36



Since [P is not hermitian in Euclidean sense
(U, V) = [d'z0'(z) pU(z)
/d4 "0, — zVa( )T + z'AZ(a:)T“%)\IJ(x)]T\IJ(x)
# (PV, V) (5.5)
we may define the hermitian
D =4"((0y — iV (2)T" — A(2)Ts) =PT  (5.6)
by rotating
Al(x) — —iAj () (5.7)

and rotate back after the calculation. This rotation spoils axial
gauge symmetry. We expand

Don() = Appn(z),
Y(x) = X anpn(),

0(w) = Shieh () 5.9
and the Jacobian for the gauge transformation is given by
(o, B) = exp{=2i £ ()3 (2)T"ys0n(2)}  (5.9)

Namely, the vector gauge symmetry parameterized by a(z)
is anomaly-free but axial gauge symmetry parameterized by
B(x) contains the anomaly, which is evaluated by

Jim Yol (2)8" (@) T f (N /M)pu()
= 3 ol (2) B (2)T vs f(P* /M) o () (5.10)
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The calculation is straightforward and gives rise to the so-
called consistent form of anomaly, but the calculation is very
tedious.

Alternative way is to write the covariant derivative as

D = 20 — iV, ()T — i AL (x)T"s)

= (0~ LT ) + 0, — R T )
(5.11)
with
RZ(:U)Ta) = Vyf‘(a:)T“ + AZ(J:)T“,
Lo(@)T") = VO(@)T" — A%(2)T",  (5.12)
and
S = /d%@@(a;)i Dy(x). (5.13)
The gauge transformation is
¥'(z) = explia (o) T () +iaf(@)T () y(a)
9'(x) = 9la) expl-iaf (2T 5 1%) — i) (-2
(5.14)

We define hermitian operators

PP = (0, — iLA TR ) + (6, — iRe(x) T
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P Pt = (0, — Lo () TP

2
(5.15)
and expand
@T Q@z - )\i(fsna
@D( ) - Zan¢n(x)7
D Plon = N,
(@) = L bl (x) (5.16)
with
[ d'zp(z)i PY(z) =X idbaay (5.17)
by noting D¢, = Ayn(x), namely, the action is exactly diag-
onalized.
The Jacobian of the gauge transformation is
1— 1 f
g = —% [ de{o)liaf@T( ") +iah@) (5 el P
anpa L ol = ppt
— g}l ()T (2% () T el )
1 — M Ou—iL ()T
= - [d'z{sl] m;g(x)Ta( 275)6 o
1 _ (0 —iRE (x)T?
vy (e g
- a a1+,y O ZL() )]2
—ghliag ()T (D) ]

2
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iR (5 e e
= —Tr [d'z / d4k e~ f i ()T (1 —2 Vs )6_[7"(%—;3%@&@)]2
W%W(l +2%> oot
—lia® (2 )Ta(l 4;75) (T 3\3‘;( )T“)P}
_zozR(a:)Ta(l _2%)@W(aﬂi\};g(m)w)]z]eikx}
= —Tr / d? d4k4e—ikx ([—i CVGL(I’)TG"}%Q_hu(aﬂ_i@%(z)T&)P

 WHOu—iRG ()T L
+iah(x) T yse M2 Je"™}

[t L {ia} 0T (L) Fas L
Fia(z)T e F,,(R)Fys(R)]

1 1 a C Vo &
= = [ dlag o [ (e T T, T Fy, (L) (L)
+zozR(:c)trT“{Tb,Tc}éumﬁFﬁy(R) o)) (51

where we used f(z) = e~ and the ralation, for example,

T
e s

1 [y (Op—iRG () T%))?
Ty (5.19)

since 1£2% are projection operators. The anomaly relations are

D) T ()
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= [6°0,, + f™™R?) ()T ()

2
1
= i327r2[trTae“”O‘ﬁFW(R)Fag(R)} (5.20)
and
D, ()T (o)
= (570, + S LD @ T (o)
1
= i [T Fy (L) Fup(L) (5.21)

The resulting anomaly has a covariant form and for this reason
it is called ”covariant anomaly” .
The anomaly cancellation condition is

trT{T° T} =0 (5.22)

by considering the case Rj(z) = 0, for example, or if the
same gauge field couples to both of the left- and right-handed
currents with in general different representations, then the can-
cellation condition is

trTe{Th, TEY — teTH{T?, T} = 0. (5.23)

An important application of the covariant anomaly is the
fermion number anomaly in the Standard Model by considering

P = 00— Wi TN ) + o)
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(5.24)

with the action for an SU(2) doublet of fermions
1 —l— V5

a a 1— Y .
S = [ d'ep{ily (@, — W@ T~ + i 9] )},
(5.25)
and the fermion number transformation
I —7 1
¥/(@) = explia(a) (~— ) +iale)(— Du(e),
— ” L4+ 1 —7
§'(x) = (o) expl—iola) () — i) )
(5.26)
The anomaly factor is
1
InJ(o) =i [d'z 57 a(z)tre™ P E,, (W) Fog(W)
2
(5.27)
and the fermion (quark) number non-conservation
1
_ vaf
a J uark( ) - 327_‘_2131’6M F (W)Faﬁ(W)
(5.28)
and similarly, the lepton number non-conservation
1 ro
8HJl‘épt0n(x) — 327T Stre ﬁFW(W)Fa@(W)
(5.29)
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If one remembers that quark carries 1/3 of a baryon number
with 3 color freedom, one concludes that

AB — AL = 0. (5.30)

Namely, B — L is anomaly-free and conserved.
This analysis is not simple in the consistent V,, and A, form
of anomaly:.

6 Further aspects of anomalies

We have discussed the basic idea of quantum anomaly and its
evaluation in the path intergral formulation. We covered only
the basic aspects and we have not discussed most of interesting
applications. Also we have not discussed issues related to:

1. The Weyl anomaly and renormalization group

2. Two-dimensional field theory and bosonization

3. Index theorem on the lattice and chiral anomalies

4. Gravitational anomalies

If you are ineterested in the detailed discussions of those
issues, please be referred to the textbook in References, where
many original references are found.
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