SM Higgs boson or not?

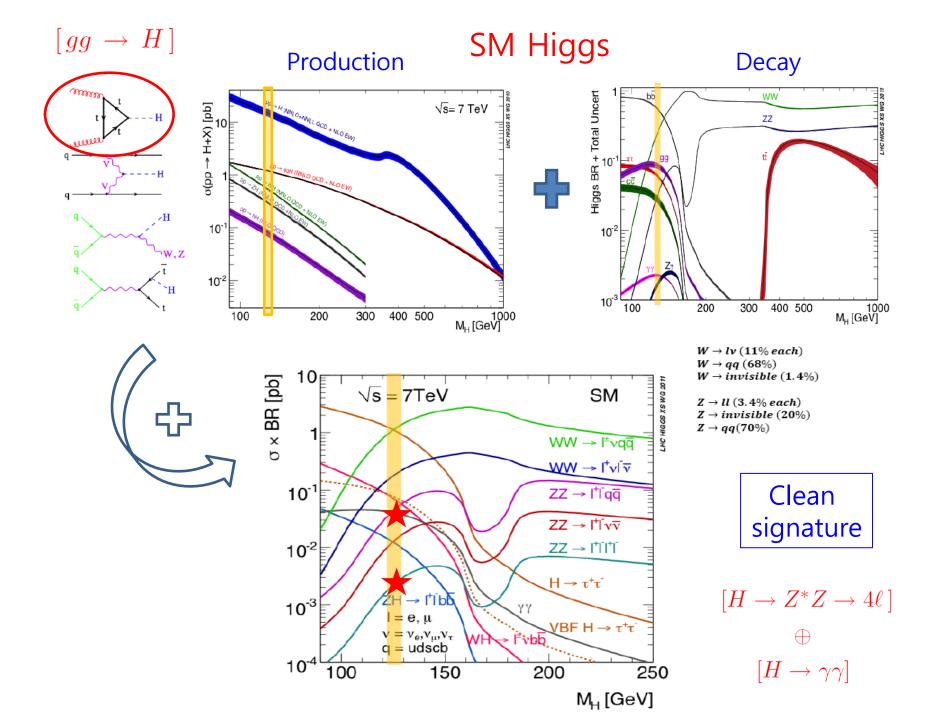
Reasonably precise mass: ~125 GeV

$$J^{PC} = 0^{++}$$
?

Model independent Clean and transparent Complementary

[Assumption]

A single(?) resonance SM-like production and decay



Most powerful channels for spin and parity determination

Clean & precise Fully reconstructed

$$H \to Z^*Z \to (\ell_1^-\ell_1^+)(\ell_2^-\ell_2^+)$$

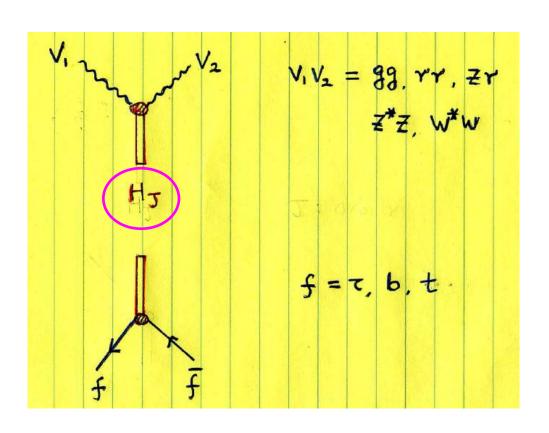
$$\ell = e, \mu$$

$$gg \rightarrow H \rightarrow \gamma \gamma$$

Unambiguous confirmation of SM H

General analysis

General vertex structure



Any integer spin J Even(+) vs. odd(-) parity

Angular correlations
Invariant mass distribution
Polarization

General description for arbitrary H spin J

[Helicity Formalism]

Traceless and symmetric

$$\langle V_1(\lambda_1)V_2(\lambda_2)|H(m)\rangle = \epsilon_{\mu}^*(p_1,\lambda_1) \,\epsilon_{\nu}^*(p_2,\lambda_2) \, \mathcal{T}^{\mu\nu\beta_1\cdots\beta_J} \,\epsilon_{\beta_1\cdots\beta_J}(p,m)$$
$$= \mathcal{T}_{\lambda_1\lambda_2} \, d_{m,\lambda_1-\lambda_2}^J(\Theta) \, e^{i(m-\lambda_1+\lambda_2) \, \Phi}$$

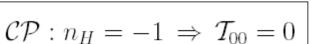
Independent of H helicity m (Wigner-Eckart theorem)

 $|m|, |\lambda_1 - \lambda_2| \leq \mathcal{J}$ $V_1(p_1, \lambda_1)$ Θ, Φ E H(p, m) $p = p_1 + p_2$ $V_2(p_2, \lambda_2)$ $k = p_1 - p_2$

At most "9" independent terms

$$n_H = (-1)^{\mathcal{J}} \mathcal{P}$$
: normality
$$\mathcal{CP} \Rightarrow \mathcal{T}_{\lambda_1 \lambda_2} = n_H \mathcal{T}_{-\lambda_1, -\lambda_2}$$

$$\mathcal{BS} \Rightarrow \mathcal{T}_{\lambda_1 \lambda_2} = (-1)^{\mathcal{J}} \mathcal{T}_{\lambda_2 \lambda_1}$$



$$\mathcal{BS}: J = \text{odd} \Rightarrow \mathcal{T}_{\lambda\lambda} = 0$$

J^P	H^JZ^*Z Coupling	Helicity Amplitudes	Threshold						
Even Normality $n_H = +$									
0+		$\mathcal{T}_{00} \!=\! [2a_1(M_H^2\!-\!M_*^2\!-\!M_Z^2)\!+\!a_2M_H^4\beta^2]/(4M_*M_Z)$	1						
	$a_1 g^{\mu \nu} + a_2 p^{\mu} p^{\nu}$	$\mathcal{T}_{11} \!=\! -a_1$	1						
		$\mathcal{T}_{00} = \beta b_1 (M_Z^2 - M_*^2) M_H / (2 M_* M_Z)$	β						
$\ _{1^{-}}$	$b_1 \left(g^{\mu\beta} p^{\nu} + g^{\nu\beta} p^{\mu} \right)$	$\mathcal{T}_{01} = \beta b_1 M_H^2 / (2M_*)$	β						
		$\mathcal{T}_{10} = -\beta b_1 M_H^2 / (2 M_Z)$	β						
		$\mathcal{T}_{11} = \beta \ b_1 \ M_H$	β						
	$c_1 \left(g^{\mu\beta_1} g^{\nu\beta_2} + g^{\mu\beta_2} g^{\nu\beta_1} \right)$	$\mathcal{T}_{00} = \left\{ -c_1 \left(M_H^4 - (M_Z^2 - M_*^2)^2 \right) / M_H^2 + M_H^2 \beta^2 \left[c_2 \left(M_H^2 - M_Z^2 - M_*^2 \right) \right] \right\}$							
	•	$+2c_3 M_H^2 + \frac{1}{2} c_4 M_H^4 \beta^2] \Big\} / (\sqrt{6} M_Z M_*)$	1						
$\ _{2^+}$	$ + c_2 g^{\mu\nu} k^{\beta_1} k^{\beta_2} + c_3 [(g^{\mu\beta_1} p^{\nu} - g^{\nu\beta_1} p^{\mu})k^{\beta_2}] $	$\mathcal{T}_{01} = -[c_1(M_H^2 - M_Z^2 + M_*^2) - c_3 M_H^4 \beta^2]/(\sqrt{2}M_*M_H)$	1						
	$+(\beta_1 \leftrightarrow \beta_2)]$ $+c_4 p^{\mu} p^{\nu} k^{\beta_1} k^{\beta_2}$	$\mathcal{T}_{10} = -[c_1(M_H^2 - M_*^2 + M_Z^2) - c_3 M_H^4 \beta^2]/(\sqrt{2}M_Z M_H)$	1						
		$T_{11} = -\sqrt{2/3} \left(c_1 + c_2 M_H^2 \beta^2\right)$	1						
	$+c_4 p^{\mu} p^{\tau} \kappa^{\mu} \kappa^{\mu} 2$	$T_{1,-1} = -2 c_1$	1						
Odd Normality $n_H = -$									
0-	$a_1\epsilon^{\mu u ho\sigma}p_ ho k_\sigma$	$ au_{00}$ =0							
U		$\mathcal{T}_{11} = i \beta M_H^2 a_1$	β						
		\mathcal{T}_{00} =0							
$\ _{1^+}$, , , , , , , , , , , , , , , , , , , ,	$\mathcal{T}_{01} = i b_1 (M_H^2 - M_Z^2 - 3M_*^2) / (2M_*)$	1						
1 '	$b_1 \epsilon^{\mu\nu\beta\rho} k_{\rho}$	$\mathcal{T}_{10} = -i b_1 (M_H^2 - M_*^2 - 3M_Z^2) / (2M_Z)$	1						
		$\mathcal{T}_{11} = i b_1 (M_Z^2 - M_*^2) / M_H$	1						
		\mathcal{T}_{00} =0							
2-	$c_1 \epsilon^{\mu\nu\beta} 1^{\rho} p_{\rho} k^{\beta} 2$ $+ c_2 \epsilon^{\mu\nu\rho\sigma} p_{\rho} k_{\sigma} k^{\beta} 1 k^{\beta} 2$	$\mathcal{T}_{01} = i \beta c_1 (M_H^2 + M_*^2 - M_Z^2) M_H / (\sqrt{2} M_*)$	β						
	$+c_2 \epsilon^{\mu\nu\rho\sigma} p_\rho k_\sigma k^{\beta} 1 k^{\beta} 2$	$T_{10} = i \beta c_1 (M_H^2 + M_Z^2 - M_*^2) M_H / (\sqrt{2} M_Z)$	β						
	$+(\beta_1 \leftrightarrow \beta_2)$	$T_{11} = i \beta 2 \sqrt{2/3} (c_1 + c_2 M_H^2 \beta^2) M_H^2$	β						
		$T_{1,-1} = 0$							

General Hyy and Hgg vertices

Bose symmetry & gauge invariance for massless photons and gluons

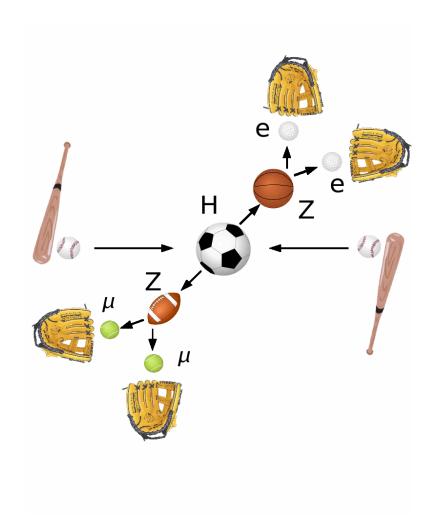
Landau, 1948; CN Yang, 1950
$$J \neq 1: [\pm \pm] \, \mathrm{only} \, \Rightarrow \, \mathcal{T}_{\pm \pm} = 0$$

$\mathcal{J}^{\mathcal{P}}$	$H\gamma\gamma$ or Hgg Coupling	Helicity Amplitudes						
Even Normality $n_H = +$								
0+	$a_1 g_{\perp}^{\mu\nu}$	$T_{11} = -a_1$						
2+	$c_{1} \left(g_{\perp}^{\mu\beta_{1}} g_{\perp}^{\nu\beta_{2}} + g_{\perp}^{\mu\beta_{2}} g_{\perp}^{\nu\beta_{1}}\right) + c_{2} g_{\perp}^{\mu\nu} k^{\beta_{1}} k^{\beta_{2}}$	$\mathcal{T}_{11} = -\sqrt{2/3}(c_1 + c_2 M_H^2)$ $\mathcal{T}_{1,-1} = -2c_1$						
Odd Normality $n_H = -$								
0-	$a_1 \epsilon^{\mu\nu\rho\sigma} p_\rho k_\sigma$	$T_{11} = i a_1 M_H^2$						
2-	$c_1 \epsilon^{\mu\nu\rho\sigma} p_{\rho} k_{\sigma} k^{\beta_1} k^{\beta_2}$	$T_{11} = i\sqrt{2/3} c_1 M_H^4$						

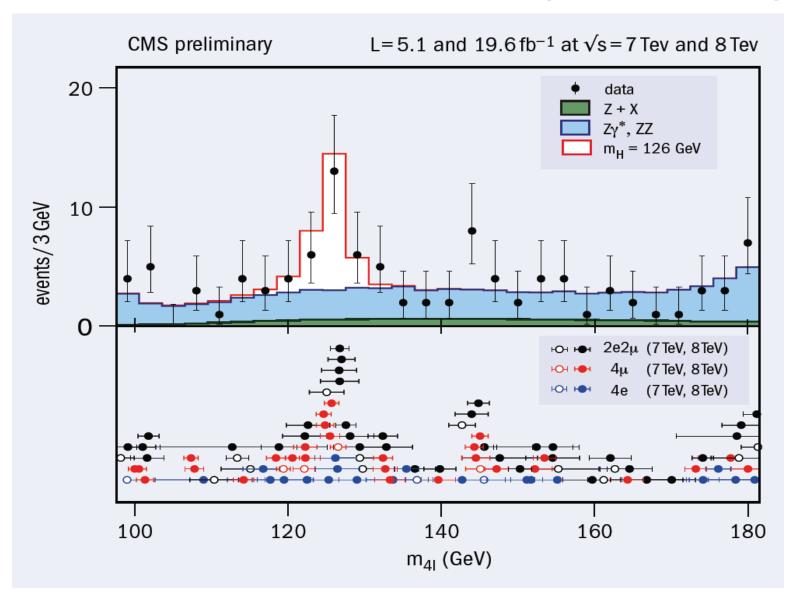
General Tensors for J ≥ 3

$$\mathcal{T}_{\mu\nu\beta_1,\cdots,\beta_J} = \mathcal{T}^{(2)}_{\mu\nu\beta_1\beta_2} k_{\beta_3}\cdots k_{\beta_J}$$

$H \to Z^*Z \to (\ell_1^- \ell_1^+)(\ell_2^- \ell_2^+)$

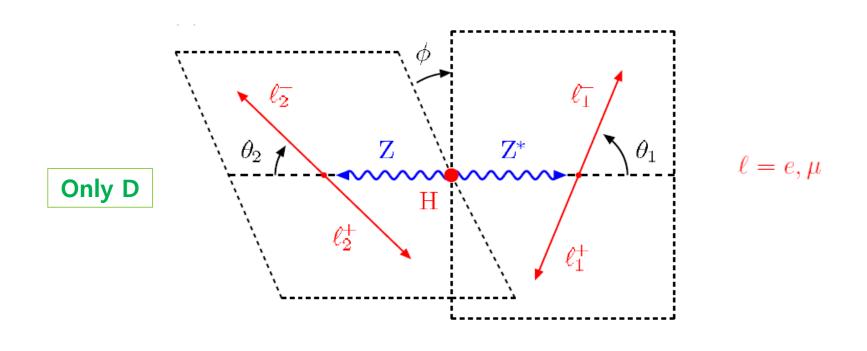


[CERN Courier, 2013-05]



[~100 events]

Fully reconstructible kinematic configuration



Kinematic variables

$$\cos \theta_1 \oplus \cos \theta_2 \oplus \phi \oplus M_*$$

Invariant mass and polar & azimuthal angle distributions

$$\frac{d\Gamma}{dM_*} \propto \frac{M_*^3}{(M_*^2 - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} \times [\beta] \times \sum |\mathcal{T}_{\lambda\lambda'}|^2$$

$$\beta \sim \sqrt{(M_H - M_Z)^2 - M_*^2}$$
 near the end point $M_* \sim M_H - M_Z$

sharp decrease

Angular correlations

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_1 d\cos\theta_2} = \mathcal{N}^{-1} \left[\frac{\sin^2\theta_1 \sin^2\theta_2 |\mathcal{T}_{00}|^2 + \frac{1}{2} (1 + \cos^2\theta_1) (1 + \cos^2\theta_2) [|\mathcal{T}_{11}|^2 + |\mathcal{T}_{1,-1}|^2] + (1 + \cos^2\theta_1) \sin^2\theta_2 |\mathcal{T}_{10}|^2 + \sin^2\theta_1 (1 + \cos^2\theta_2) |\mathcal{T}_{01}|^2 \right]$$

$$\frac{1}{\Gamma_H} \frac{d\Gamma_H}{d\phi} = \frac{1}{2\pi} \left[1 + n_H |\zeta_1| \cos 2\phi \right] \quad \text{with} \quad |\zeta_1| = |\mathcal{T}_{11}|^2 / [2\sum |\mathcal{T}_{\lambda\lambda'}|^2]$$

SM

Odd n_H

SM:
$$\mathcal{T}_{00} = \frac{M_H^2 - M_Z^2 - M_*^2}{2M_Z M_*}, \quad \mathcal{T}_{11} = -1$$

 $\mathcal{CP}: \mathcal{T}_{00} = 0 \implies {}^{\nexists}s_1^2s_2^2 \text{ correlations}$

Even n_H

 $d\Gamma/dM_* \sim \beta$

 $\exists s_1^2 s_2^2 \text{ correlations}$

 (1^-) : every $\mathcal{T}_{\lambda_1\lambda_2} \sim \beta \Rightarrow d\Gamma/dM_* \sim \beta^3$

 $\begin{array}{l}
\overline{(2^+)}: \ T^{\mu\nu\beta_1\beta_2} \sim g^{\mu\beta_1}g^{\nu\beta_2} + g^{\mu\beta_2}g^{\nu\beta_1} \\
\text{Yes} \Rightarrow d\Gamma/dM_* \sim \beta \ \underline{\text{with} \ (1+c_i^2)s_j^2} \\
\text{No} \Rightarrow d\Gamma/dM_* \sim \beta^5 \ \underline{\text{w/o} \ (1+c_i^2)s_j^2}
\end{array}$

 $J \ge 3$

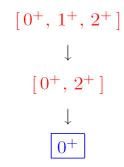
At least (J-2) momentum factors $\Rightarrow d\Gamma/dM_* \sim \beta^{2J-3}$ with $2J-3 \geq 3$

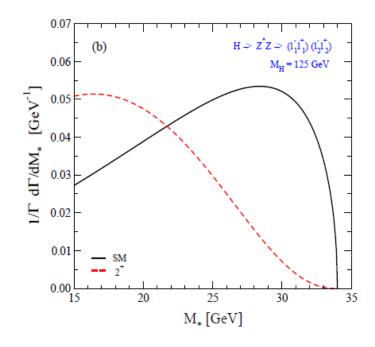
Unambiguous selection rules for SM Higgs boson

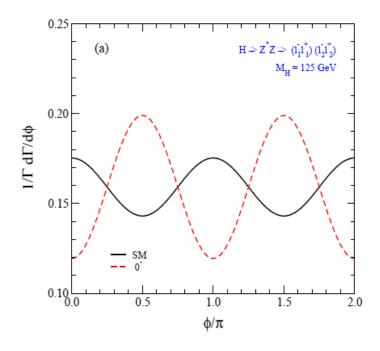
Invariant mass spectrum linear in β

Observation of $\sin^2 \theta_1 \sin^2 \theta_2$

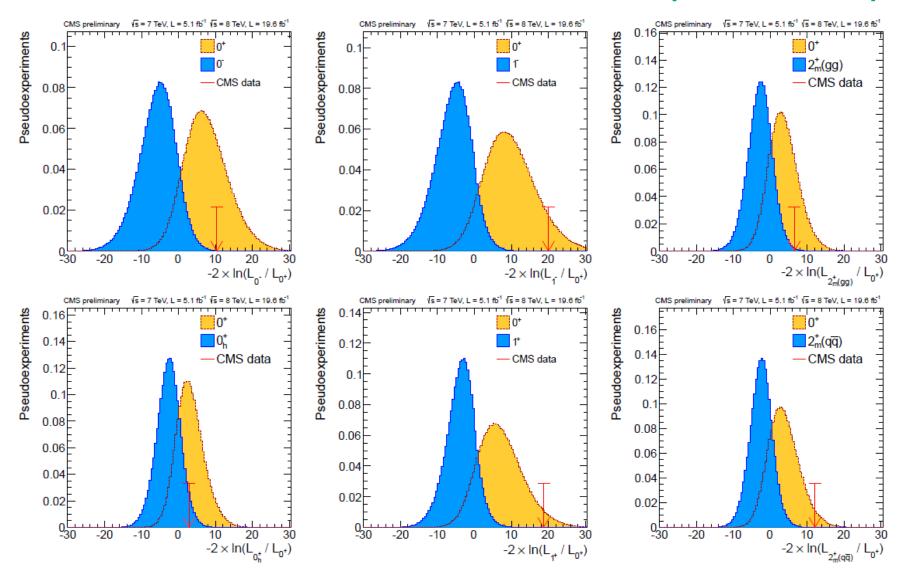
Absence of $(1 + \cos^2 \theta_1) \sin^2 \theta_2$ and $\sin^2 \theta_1 (1 + \cos^2 \theta_2)$







[HIG-13-002 @ CMS]



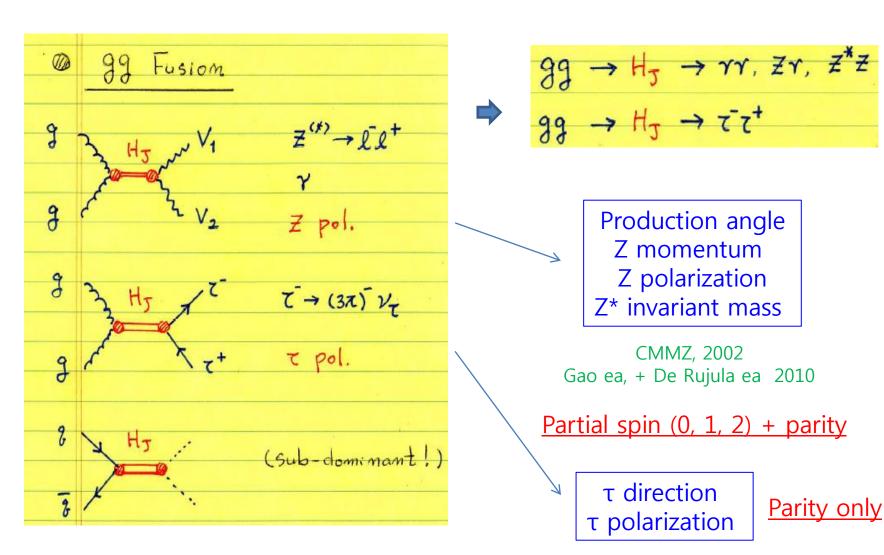
 0^- and 2^+ excluded at 99.84% and 98.5% CL in favor of 0^+

Summary of spin/parity hypothesis tests

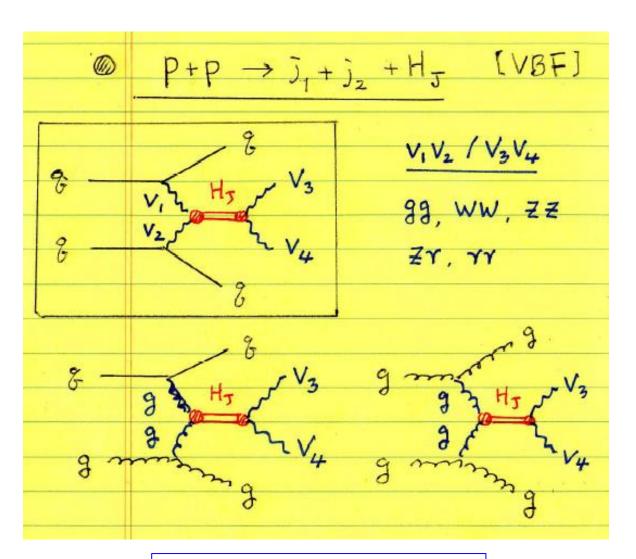
[CERN Courier, 2013-05]

Observed CL_s compared with $J^P = 0^+$		0-(gg) pseudo- scalar	2 _m (gg) minimal couplings	2 _m (qq̄) minimal couplings	1-(qq̄) exotic vector	1+ (qq̄) exotic pseudo-vector
ZZ ^(*)	ATLAS	2.2%	6.8%	16.8%	6.0%	0.2%
	CMS	0.16%	1.5%	<0.1%	<0.1%	<0.1%
WW ^(*)	ATLAS	_	5.1%	1.1%	_	_
VV VV '	CMS	_	14%	_	_	_
γγ	ATLAS	_	0.7%	12.4%	_	_

Powerful and complementary processes



Berge, Bernreuther, Ziethe, 2008



Various angular correlations

Partial spin (0 and 2) + parity analysis

Hagiwara, Li, Mawatari, 2009

Summary

To veto any non-SM scenarios \Rightarrow general analysis mandatory

Measure the mass, spin/parity, couplings and so on of the new boson

$$H \to Z^*Z \to 4\ell \quad \oplus \quad gg \to H \to \gamma\gamma$$

$$\downarrow \downarrow$$

Powerful and complementary for spin/parity measurements $[J^P = 0^+ \text{ already strongly favored!}]$

New approaches for spin/parity measurements?!

More detailed/realistic theoretical/experimental analyses highly recommended!

LHC Higgs CXN WG, YR3