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prototype : supersymmetric harmonic oscillators
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back to the supersymmetric harmonic oscillators
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18



so, how does one compute such things ?

19



so, how does one compute such things ?

20



path integrals versus (twisted) partition functions
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generally,
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generally,

?
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but what happens if some fields are massless ?
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compute the fermion-zero-mode-saturated piece !
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compute the fermion-zero-mode-saturated piece !
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note: normalization of the path integral measure

the path integral measure should be normalized to reproduce 
correctly-normalized partition functions of harmonic oscillators 

integral over each     should produce the eigenvalue of         and nothing else 
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note: normalization of the path integral measure
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with the normalization explicit
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for general dimensions with complex susy
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for general dimensions with complex susy

for computation of h, all zero-mode-excised one-loop determinants, 
if any, are understood to be divided by their regularizing counterpart
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for cases with real fermions

from mismatch btw bosonic & fermionic
regularizing determinants, the zero-mode 
excised and zeta-function regularized
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for general dimensions with real susy

a final subtlety is an overall factor of i’s associated with integrating real fermions
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supersymmetric quantum mechanics
and related index theorems
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 charged spinor under the influence of magnetic field
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1) Abelian Dirac index
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1) Abelian Dirac index

66
will ignore this term for simplicity,
as it turns out to be ignorable
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a simple Dirac index with Abelian gauge field
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a simple Dirac index with Abelian gauge field

= #(lowest landau level states on torus with magnetic flux N



2) non-Abelian Dirac index
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2) non-Abelian Dirac index
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1. keep track only of gauge indices of 
wavefunctions, and have no superpartners

2. (-1)^F does not include these fermions
 anti-periodic boundary condition for them

3. for traceless gauge field,         has 
no zero-point energy, and excitations
by     cost no energy

4. path integral over         sector is to be
restricted, so that one effectively traces 
over one-particle states,        , only.



2) non-Abelian Dirac index
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path integral over         sector is to be
restricted, so that one effectively traces 
over one-particle states,        , only.

use a hybrid formulation where       
sector is quantized first and 
one-particle subsector is traced over
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2) non-Abelian Dirac index
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3) Atiyah-Singer index
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a simple Atiyah-Singer index with Abelian gauge field



4) Euler index
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Euler index in 2d
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Euler index in 2d
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Hamiltonian view and heat kernel expansion
with the simplest case of Euler index
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back to the Hamiltonian viewpoint

1. conceptually straightforward

2. trivial to normalize

3. sign ambiguity issue more transparent

4. easier to deal with gauge symmetry 

5. perhaps more model-dependent computationally

6. less flexible for localization procedure



4)’ Euler index in the Hamiltonian view
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4)’ Euler index in the Hamiltonian view
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covariant Laplacian on differential forms



4)’ Euler index in the Hamiltonian view
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4)’ Euler index in the Hamiltonian view
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in geodesic normal coordinates,
near at any given point



4)’ Euler index in the Hamiltonian view
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index theorems in the Hamiltonian view  heat kernel
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heat kernel expansion :     power counting
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1. each          

2. each x-integral  

3. each s-integral  

4. each derivative of x in        

5. each x in        
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4)’ Euler index in the Hamiltonian view
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4)’ Euler index in the Hamiltonian view
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4)’ Euler index in the Hamiltonian view
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gauged quantum mechanics, or
how to rediscover the gauge field
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Hamiltonian Gauss constraint



gauged quantum mechanics
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Hamiltonian Gauss constraint

 time evolution by       with the constraint           imposed



gauged quantum mechanics

119

how in the world do we do such a computation ?



gauged quantum mechanics

120

how in the world do we do such a computation ?

consider the simple cases with Abelian gauge fields



gauged quantum mechanics

121

how in the world do we do such a computation ?

consider the simple cases with Abelian gauge fields



gauged quantum mechanics
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again, how in the world do we do such a computation ?



gauged quantum mechanics
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which should be contrasted against previous ungauged cases



gauged quantum mechanics
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which should be contrasted against previous ungauged cases



gauged quantum mechanics
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gauged quantum mechanics
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index of gauged quantum mechanics
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again, we are lead to the Euclidean path integral

with periodic boundary condition,

where A_0 is Euclideanized and frozen to be time-independent



equivariant index and how it localizes the computation
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equivariant index 
 quantum mechanics with global symmetry
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is now a global symmetry
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equivariant index 
 quantum mechanics with global symmetry

131

unlike    of the gauged case,   is not a dummy variable to be integrated over

 in the small    limit, the computation received contribution 

from saddle points (submanifold) invariant under the global symmetry



equivariant index 
 quantum mechanics with global symmetry
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we are lead to the Euclidean path integral

with the global charge coupled to external gauge field

with the gauge field fixed at the value



equivariant Euler index
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refined Euler index
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