algebra, geometry, and Schroedinger atoms

PILJIN YI

Korea Institute for Advanced Study

PSI2013, Alpensia Resort, July 2013

Atiyah-Singer Index Theorem ~ 1963	1975 ~	Bogomolnyi-Prasad-Sommerfeld (BPS)
Calabi-Yau ~ 1978	1977 ~	Supersymmetry
Calibrated Geometry ~ 1982	1983 ~	Superstring Theory
(Harvey & Lawson)	•	
	1985 ~	Calabi-Yau Compactification
	988 ~	Mirror Symmetry
	•	
Homological Mirror Symmetry ~ 1994	1994 ~	Wall-Crossing Discovered
(Kontsevich)		(Seiberg & Witten)
	1995 ~	Dirichlet Branes
	998 ~	Wall-Crossing is Bound State
		Dissociation (Lee & P.Y.)
	•	
Stability & Derived Category ~ 2000	2001~	Wall-Crossing for Black Holes
		(Denef)
Wall-Crossing Conjecture~ 2008	2008 ~	Konstevich-Soibelman Explained
(Conjecture by Kontsevich & Soibelman)		(Gaiotto & Moore & Neitzke)
•		
•	2011~	KS Wall-Crossing proved
•		via Quatum Mechanics
		Manschot , Pioline & Sen /
		Kim , Park, Wang & P.Y. / Sen

quantum is algebraic

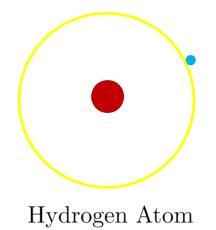
spacetime is geometric

a little bit of superstring theory particles from geometry / geometry from particles

how quantum mechanics solved modern geometry

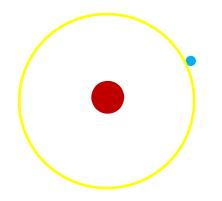
quantum is algebraic

Balmer / Rydberg ~ 1880's



$$\lambda \sim 10^{-4} cm - 10^{-5} cm = 10000 \text{\AA} - 1000 \text{\AA}$$

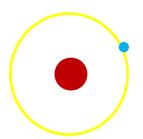
Balmer / Rydberg



Hydrogen Atom'

 $\sim \sim \sim$

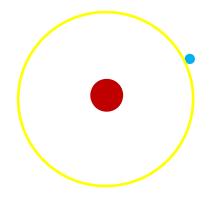
 ΔE : $1 \sim 10 \ eV$



Hydrogen Atom

 $1 \ eV \simeq 1.6 \times 10^{-19} Joule$

Balmer / Rydberg

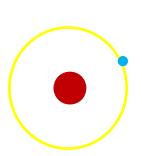


Hydrogen Atom'

$$n, k = 1, 2, 3, \dots$$

$$\longrightarrow \Delta E = E_0 \times \left(\frac{1}{n^2} - \frac{1}{k^2}\right)$$

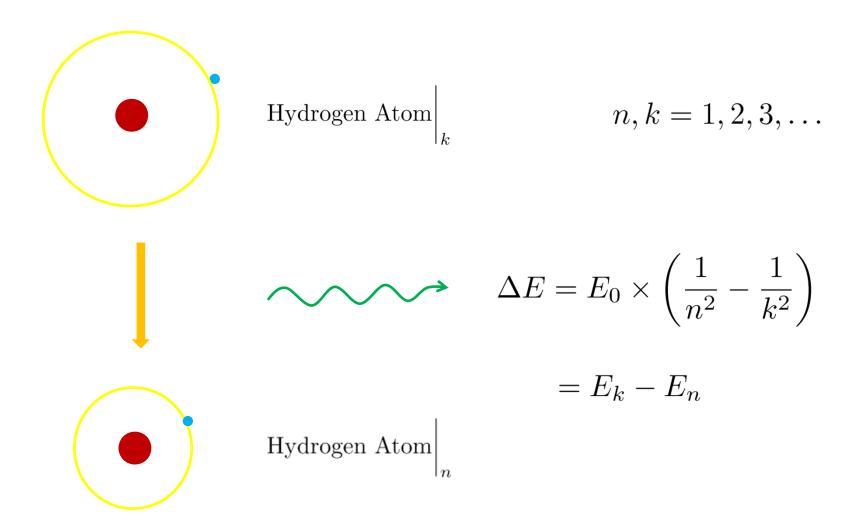
 $E_0 \simeq 13.6 \ eV$



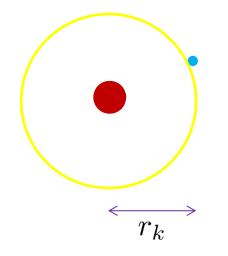
Hydrogen Atom

 $1 \ eV \simeq 1.6 \times 10^{-19} Joule$

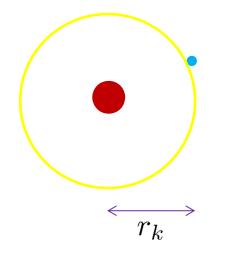
Balmer / Rydberg



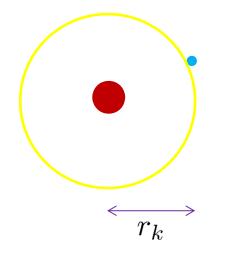
Bohr Atom ~ 1913



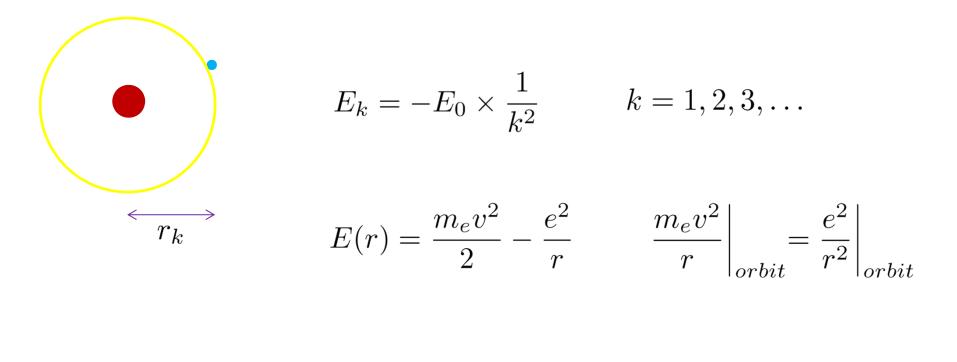
$$E_k = -E_0 \times \frac{1}{k^2}$$
 $k = 1, 2, 3, \dots$



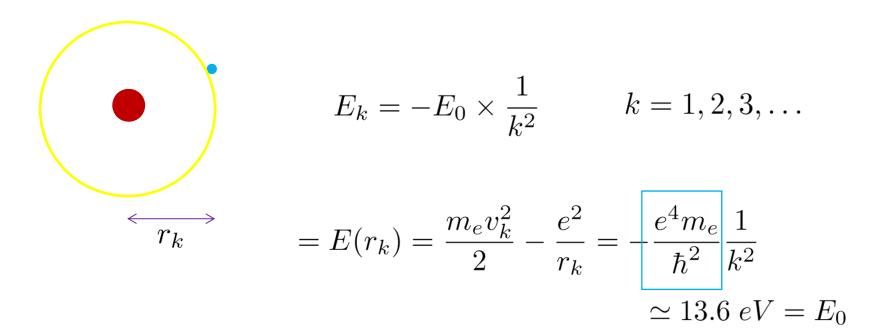
$$E_k = -E_0 \times \frac{1}{k^2} \qquad k = 1, 2, 3, \dots$$
$$E(r)_{classical} = \frac{m_e v^2}{2} - \frac{e^2}{r}$$



$$E_{k} = -E_{0} \times \frac{1}{k^{2}} \qquad k = 1, 2, 3, \dots$$
$$E(r) = \frac{m_{e}v^{2}}{2} - \frac{e^{2}}{r} \qquad \frac{m_{e}v^{2}}{r}\Big|_{orbit} = \frac{e^{2}}{r^{2}}\Big|_{orbit}$$



Bohr's rule
$$\rightarrow \qquad \begin{array}{c} m_e v_k \times 2\pi r_k = k \times h \\ \Rightarrow m_e v_k \times r_k = k \times \hbar \end{array} \rightarrow \qquad \sqrt{\frac{e^2 r_k}{m_e}} = k \times \hbar \end{array}$$



Bohr's rule
$$\rightarrow \qquad \begin{array}{c} m_e v_k \times 2\pi r_k = k \times h \\ \Rightarrow m_e v_k \times r_k = k \times \hbar \end{array} \rightarrow \qquad \sqrt{\frac{e^2 r_k}{m_e}} = k \times \hbar \end{array}$$

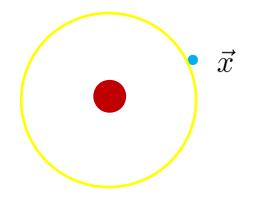
Schroedinger ~ 1925



$$H|\Psi_{k,\ldots}\rangle = E_k|\Psi_{k,\ldots}\rangle$$

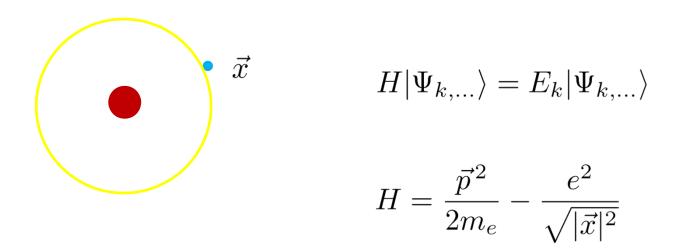
$$H = \frac{\vec{p}^{\,2}}{2m_e} - \frac{e^2}{\sqrt{|\vec{x}|^2}}$$

$$\vec{p}_{classical} = m_e \frac{d\vec{x}_{classical}}{dt}$$

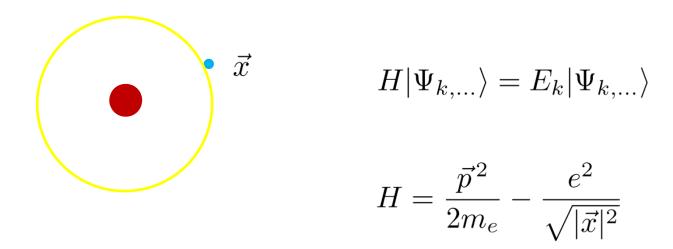


$$H|\Psi_{k,\dots}\rangle = E_k|\Psi_{k,\dots}\rangle$$
$$H = \frac{\vec{p}^2}{2m_e} - \frac{e^2}{\sqrt{|\vec{x}|^2}}$$
$$[n - n]^{-1} = n - n]^{-1}$$

$$[p_1, x^1] \equiv p_1 x^1 - x^1 p_1 = i\hbar$$
$$[p_2, x^2] = i\hbar$$
$$[p_3, x^3] = i\hbar$$

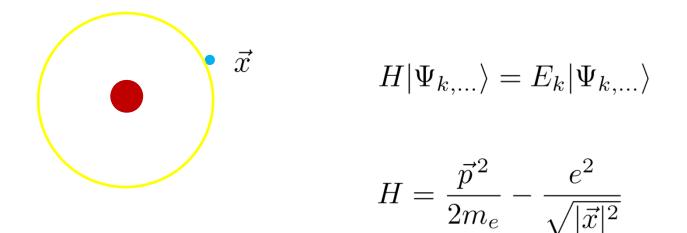


$$\vec{L} = \vec{x} \times \vec{p}$$

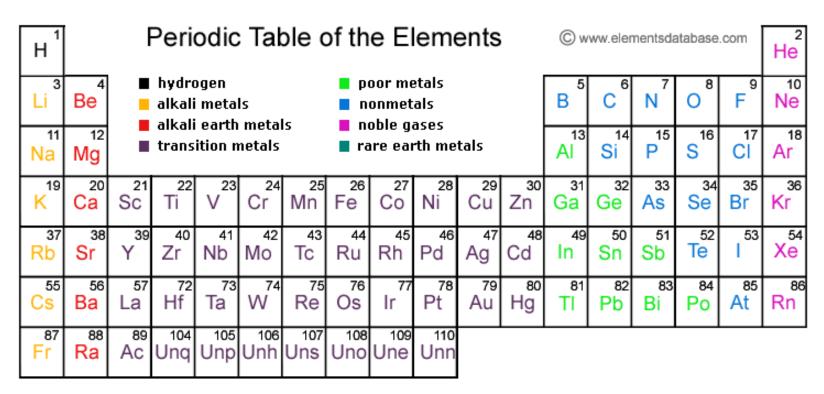


$$\vec{L} = \vec{x} \times \vec{p}$$

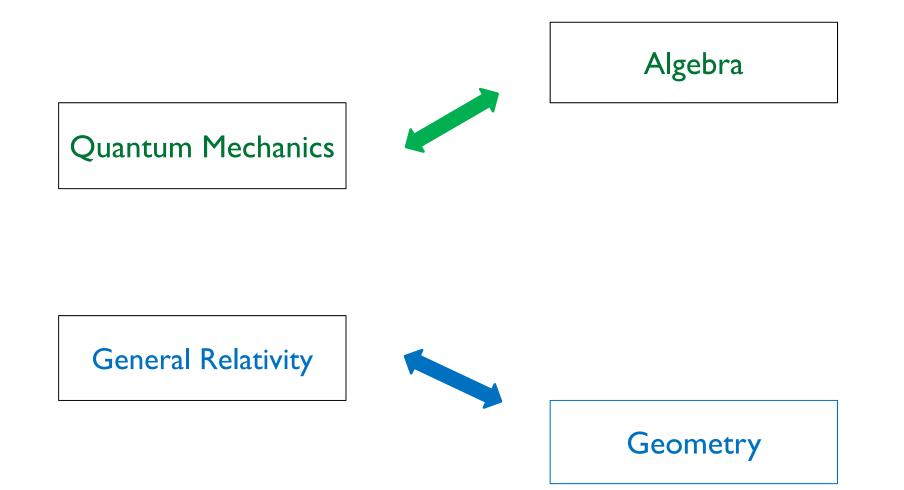
$$\tilde{K}_i = K_i \sqrt{\frac{m}{-2H}}$$

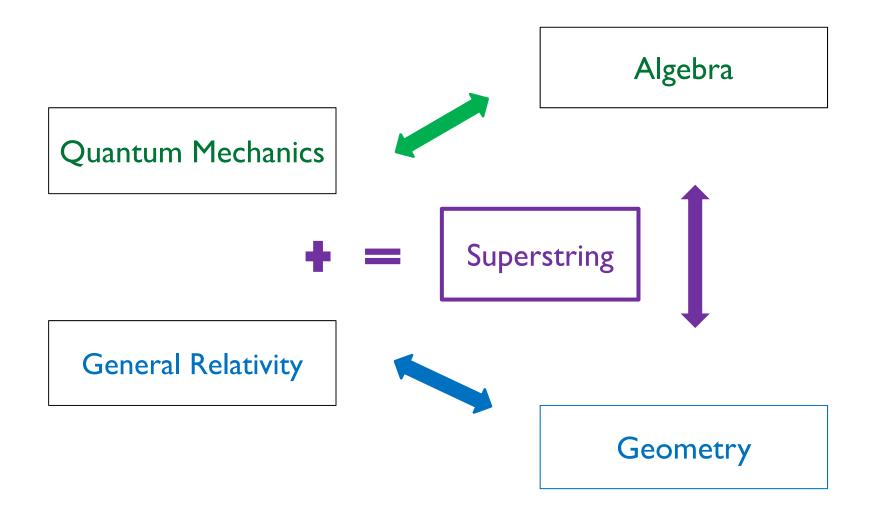


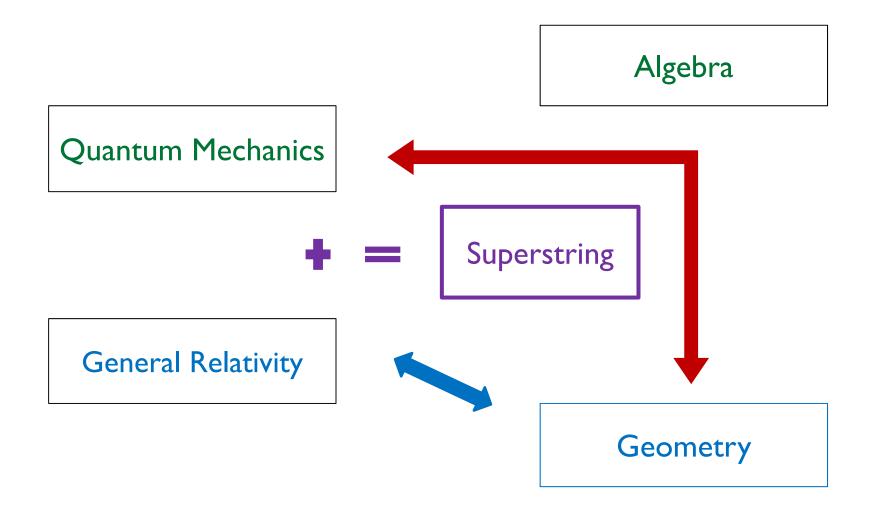
$$E_1 = -E_0 \simeq -13.6 \ eV \qquad 2 \times 1 \ \text{distinct} \ |\Psi_{1,\dots}\rangle$$
's
$$E_2 = -E_0/4 \simeq -3.4 \ eV \qquad 2 \times 4 \ \text{distinct} \ |\Psi_{2,\dots}\rangle$$
's
$$E_3 = -E_0/9 \simeq -1.5 \ eV \qquad 2 \times 9 \ \text{distinct} \ |\Psi_{3,\dots}\rangle$$
's



Ce	59	60	61	62	Eu	64	Tb	66	67	68	69	70	71
58	Pr	Nd	Pm	Sm	Eu	Gd		Dy	Ho	Er	Tm	Yb	Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm		102 No	

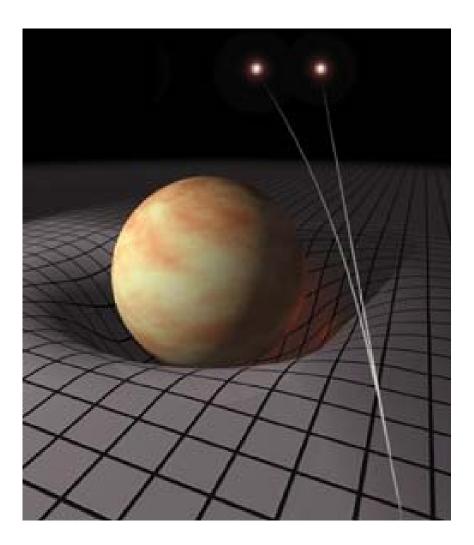






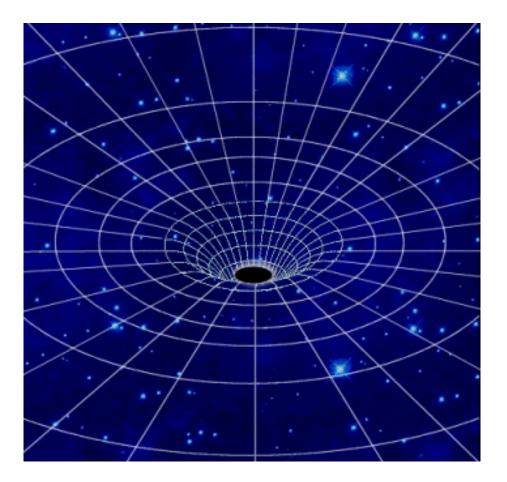
spacetime is geometric

Einstein ~ 1915



$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$

Black Holes ~ 1915



$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$

Real Black Holes in Galactic Centers

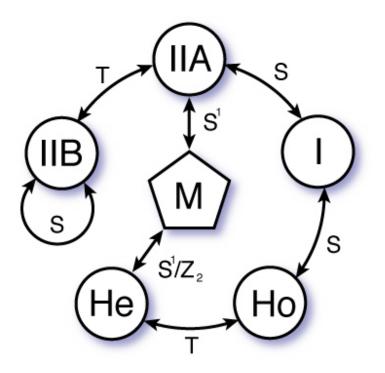
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$

Kaluza & Klein (~1921) asked :

can the world has more than 3 spatial dimensions or 4 spacetime dimensions with the extra directions curled up so small to be practically invisible and, if so, what are the physical consequences ?

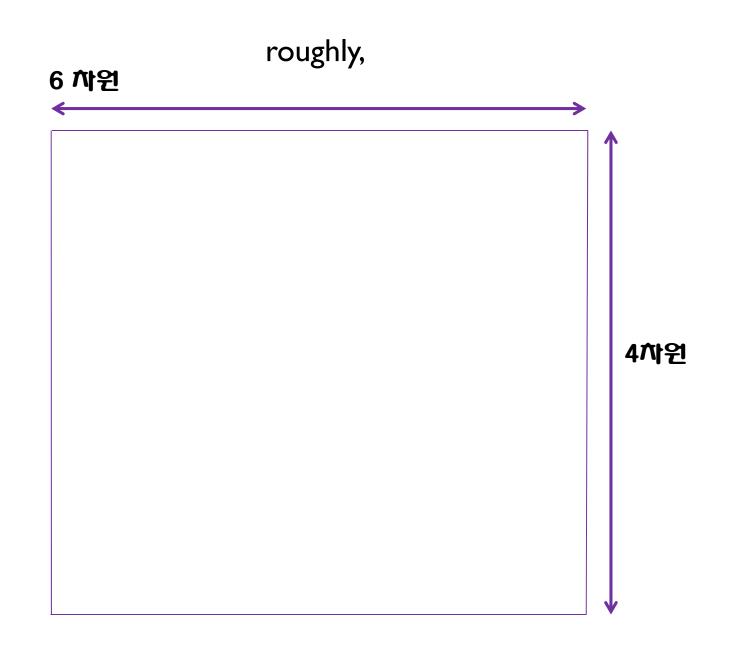
after all, space (& time) is supposed to curved

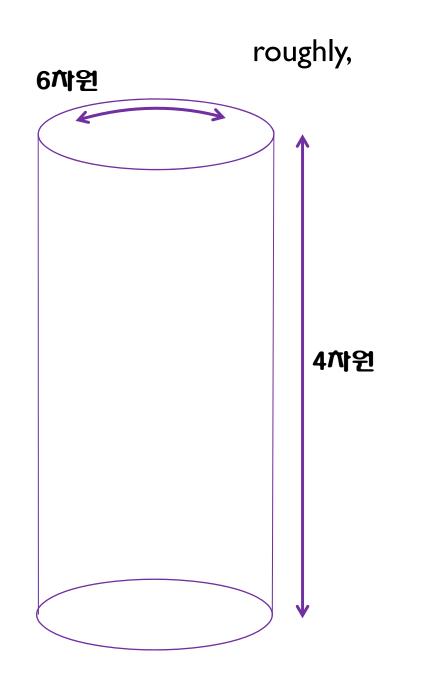
five superstring theories live in 10 dimensional spacetime

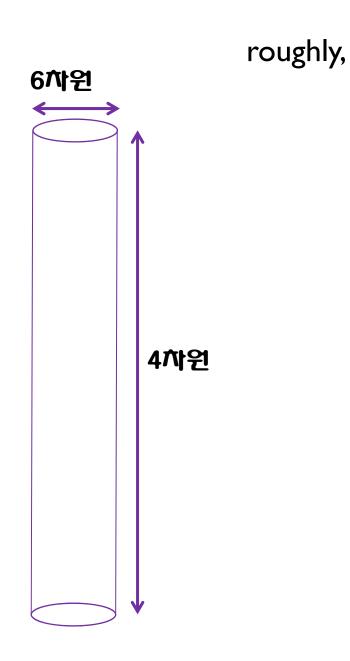


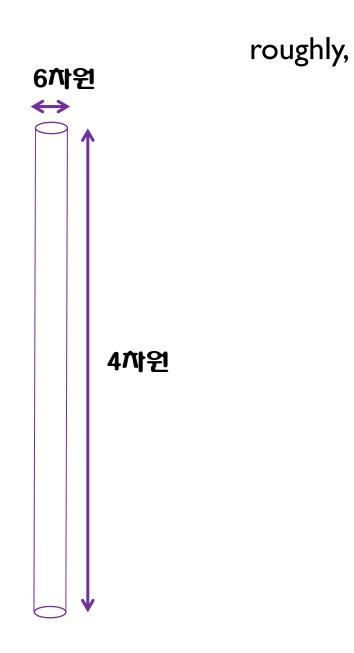
superstring theory says :

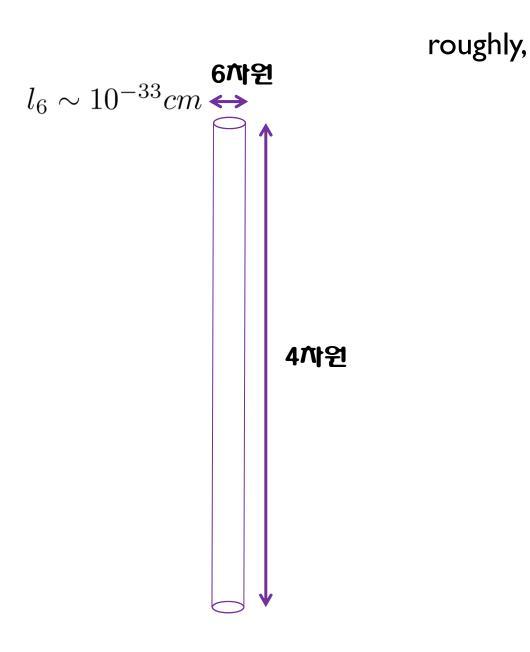
spacetime is composed of 4+6 dimensions with very small & tightly-curved (say, Calabi-Yau) 6D manifold sitting at each and every point of usual 3D space,



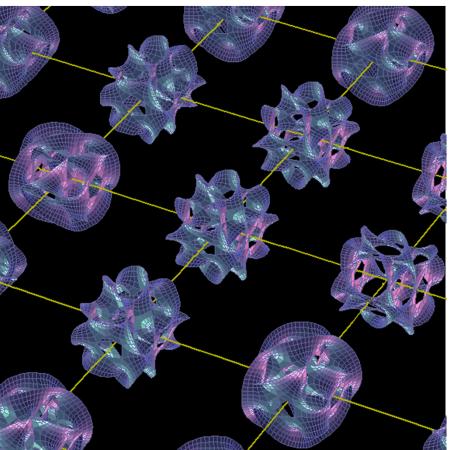








that is, more precisely,



$$\rightarrow 10^{-13} cm \gg l_{size} > 10^{-33} cm$$

$$R_{AB} - \frac{1}{2}g_{AB}R = 8\pi\kappa_{9+1}^2 T_{AB}$$

superstring theory says :

spacetime is composed of 4+6 dimensions with very small & tightly-curved (say, Calabi-Yau) 6D manifold sitting at each and every point of usual 3D space,

which implies

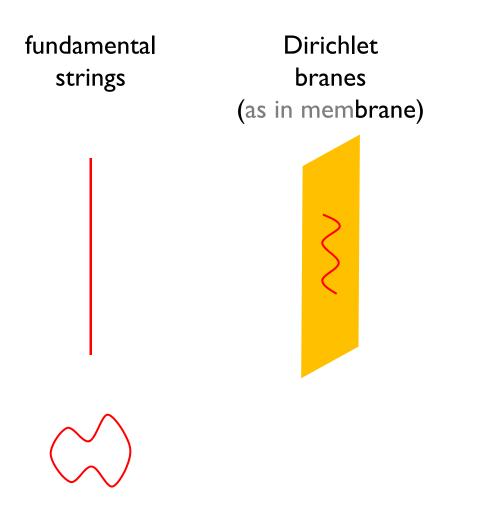
a little bit of superstring theory

particles from geometry / geometry from particles

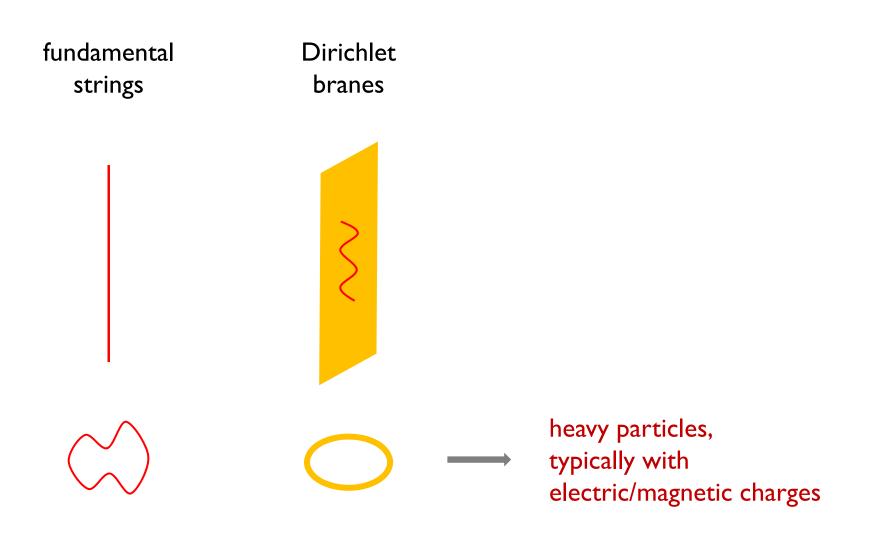
basic building blocks in superstring theory

fundamental strings

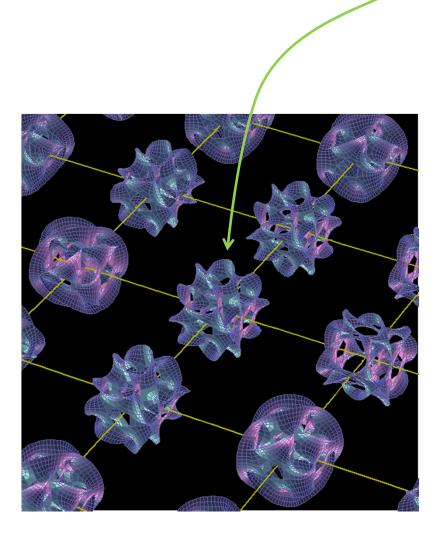
light particles some of which mediate "forces" such as gravity & electromagnetism basic building blocks in superstring theory



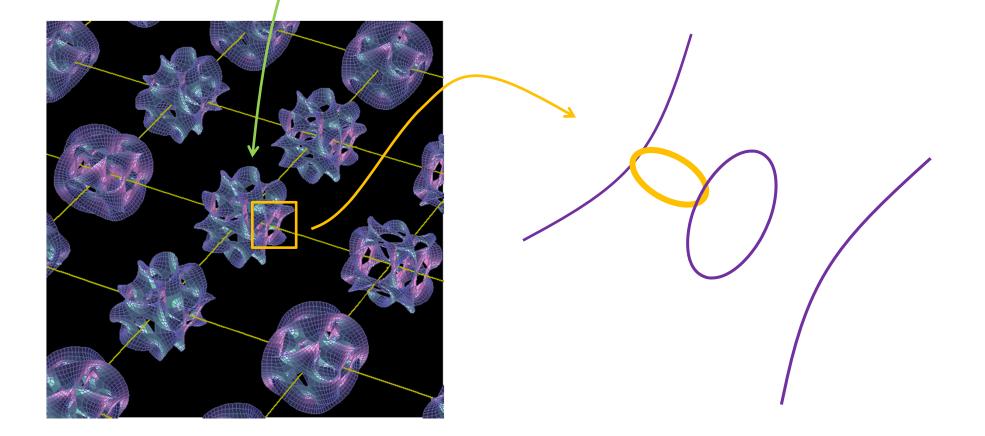
basic building blocks in superstring theory

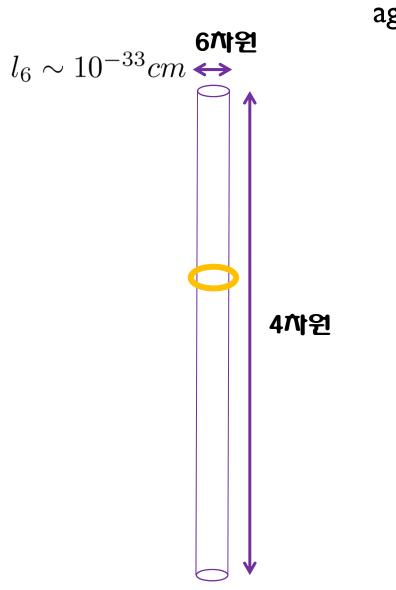


a particle located somewhere in our visible space



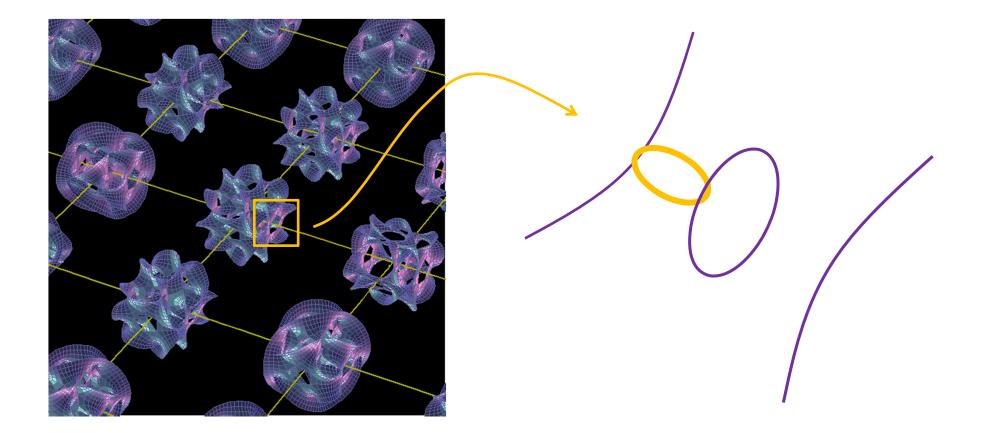
a particle located somewhere in our visible space = a wrapped brane in the hidden Calabi-Yau at that point

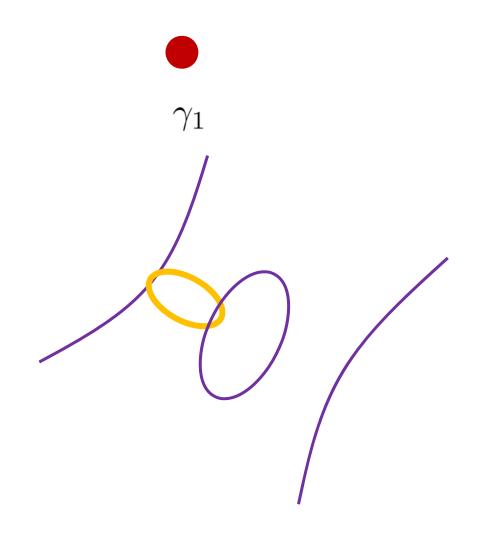


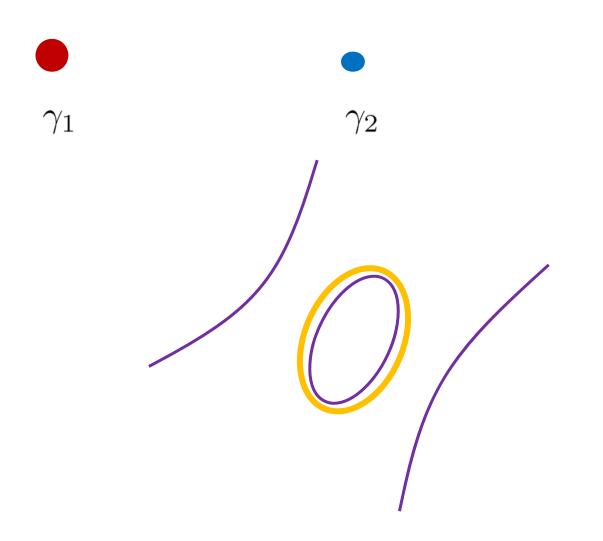


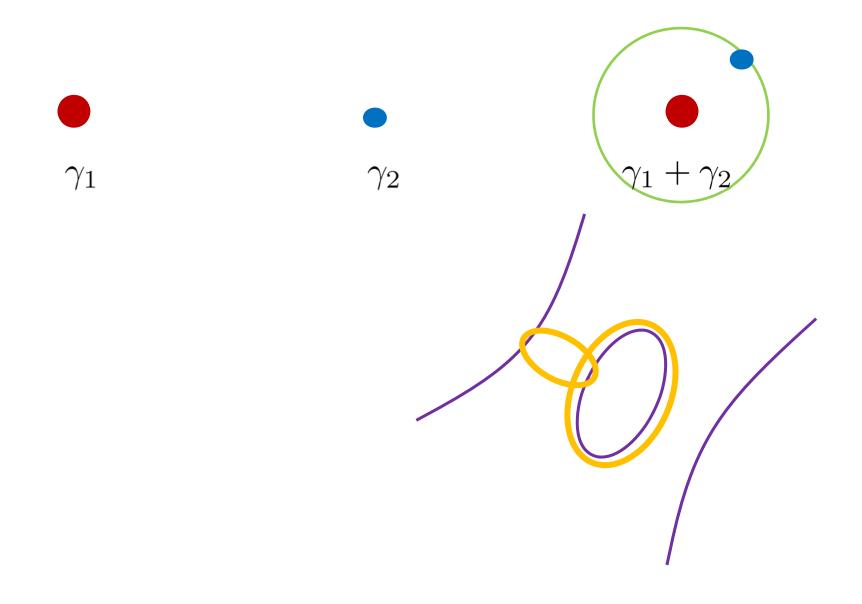
again, roughly,

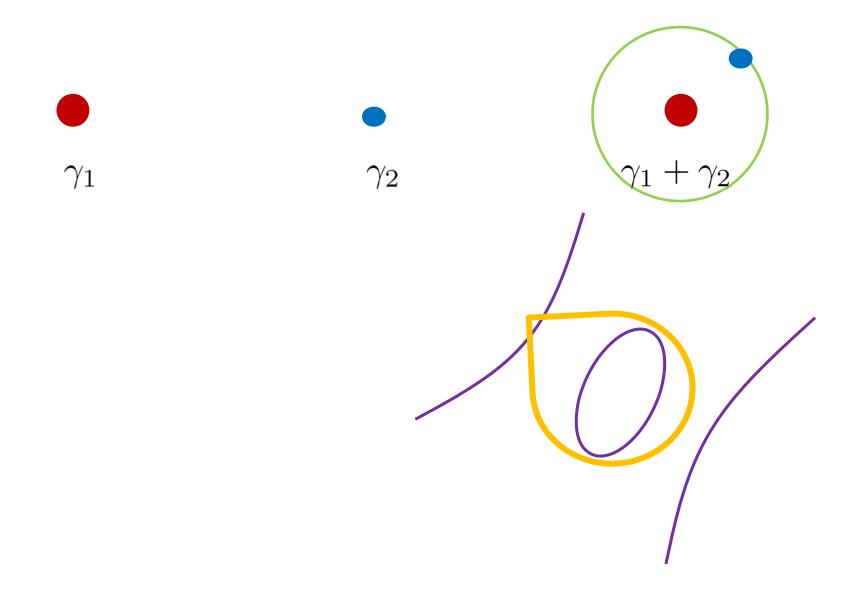
this means that we can actually detect geometry (loops, holes, cavities,) of the hidden 6D space by detecting what kind particles exist in visible 3D world



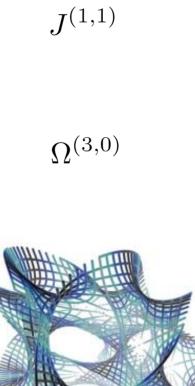


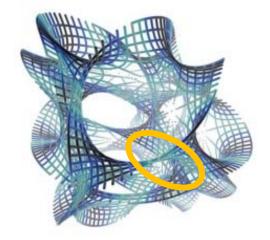






excursion : Calabi-Yau manifold & calibrated 3-cycles

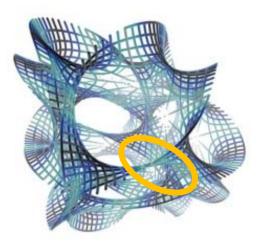


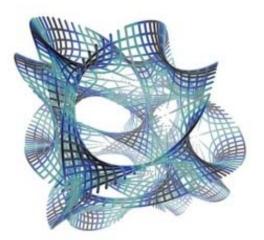


given a family of Calabi-Yau manifold with a fixed topology, which topological 3-cycles can be calibrated ?

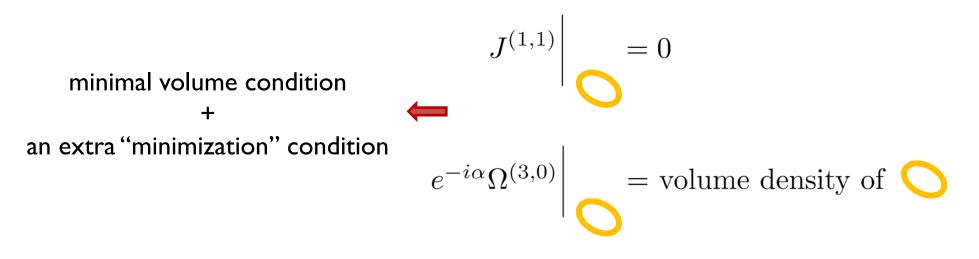
$$J^{(1,1)} \qquad \qquad J^{(1,1)} \qquad = 0$$

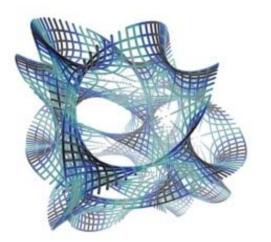
$$\Omega^{(3,0)} \qquad e^{-i\alpha} \Omega^{(3,0)} \qquad = \text{volume density of } \bigcirc$$

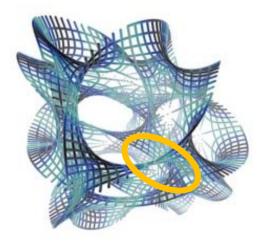




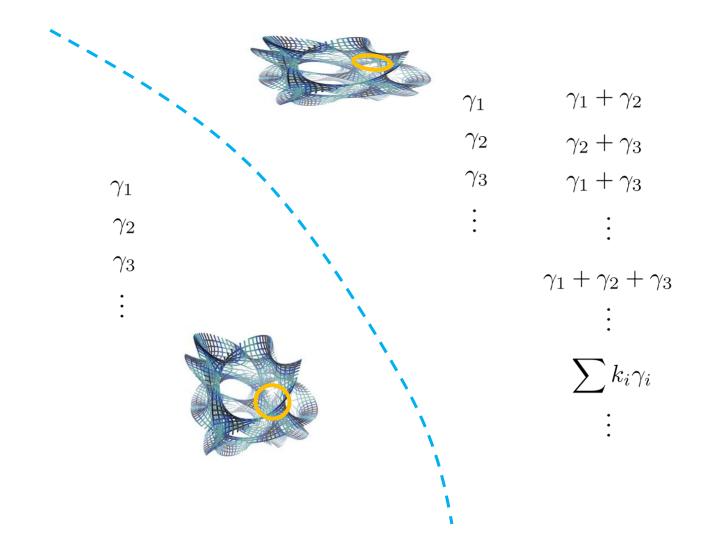
given a family of Calabi-Yau manifold with a fixed topology, which topological 3-cycles can be calibrated ?

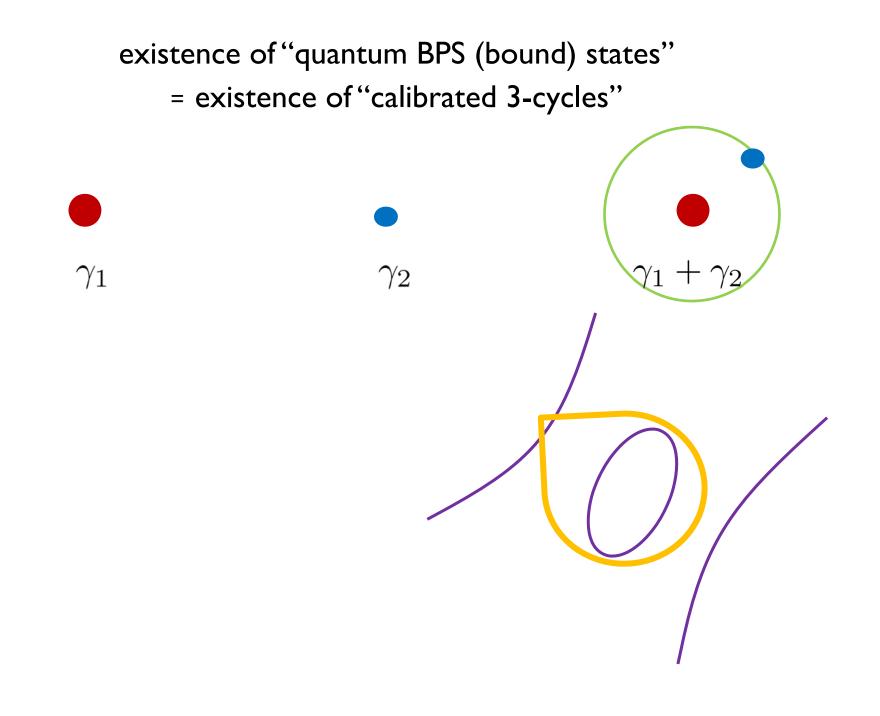




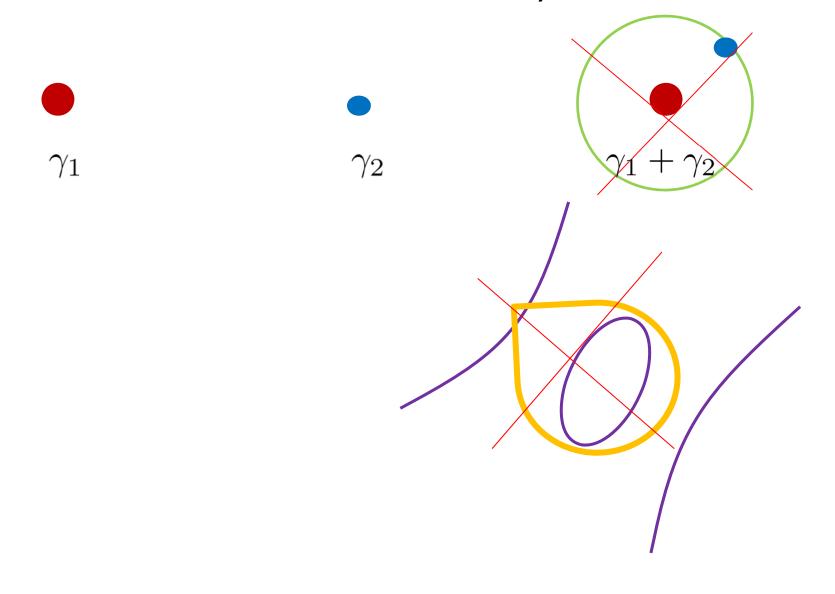


which is the reason why topology alone cannot guarantee existence of such cycles

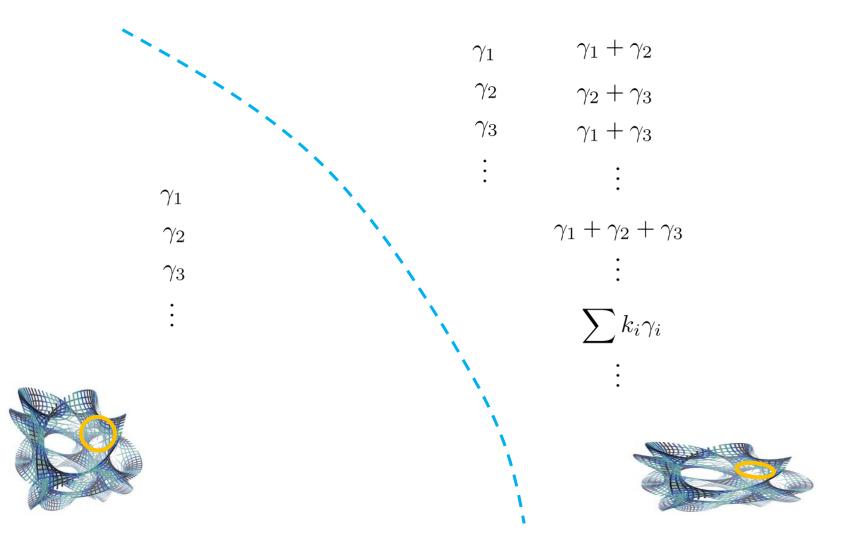




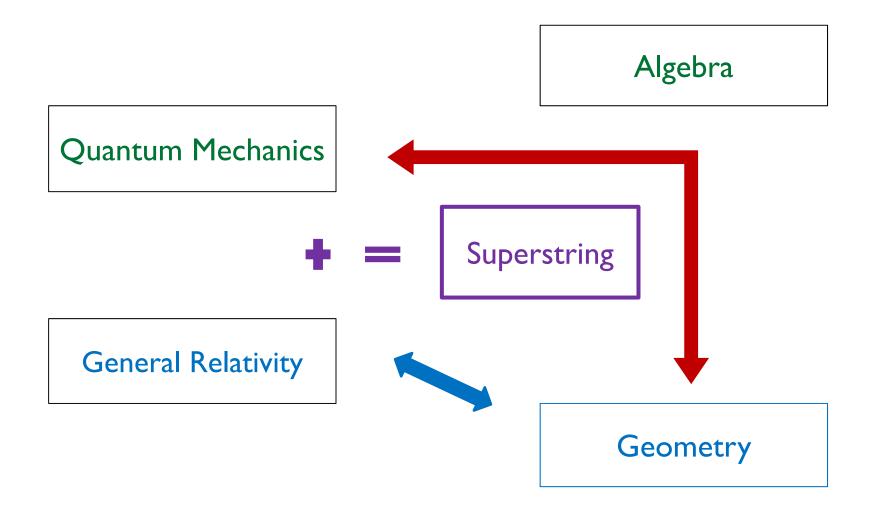
non-existence of "quantum BPS (bound) states"
= non-existence of "calibrated 3-cycles"



the answer depends on the precise shape/size of the Calabi-Yau



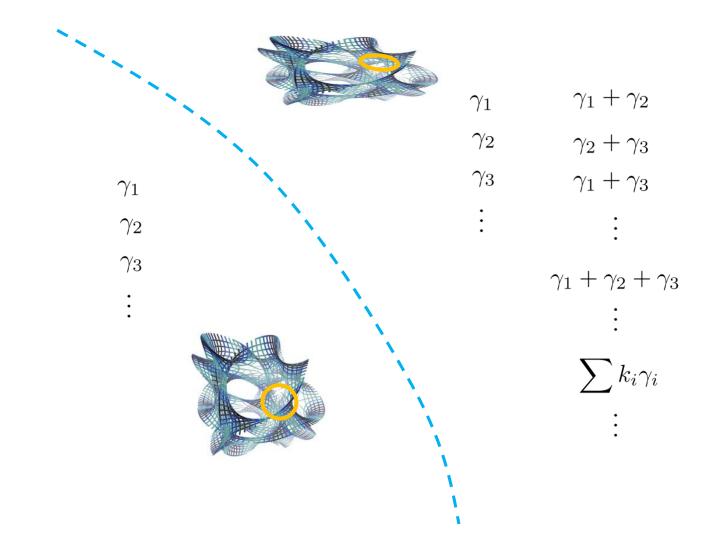
how quantum mechanics solved modern geometry



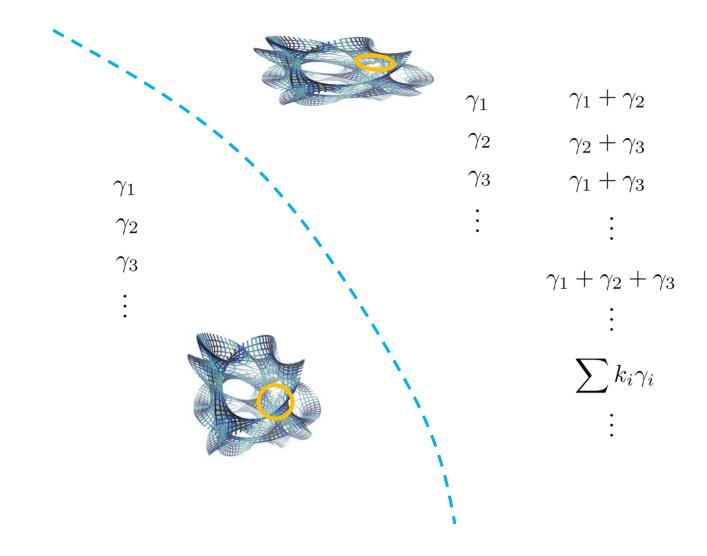
Atiyah-Singer Index Theorem ~ 1963 Calabi-Yau ~ 1978 Calibrated Geometry ~ 1982 (Harvey & Lawson) Homological Mirror Symmetry ~ 1994 (Kontsevich) Stability & Derived Category ~ 2000 Wall-Crossing Conjecture~ 2008 (Conjecture by Kontsevich & Soibelman)

975 ~ 977 ~	Bogomolnyi-Prasad-Sommerfeld (BPS) Supersymmetry
1983 ~	Superstring Theory
1985 ~	Calabi-Yau Compactification
1988 ~	Mirror Symmetry
1994 ~	Wall-Crossing Discovered (Seiberg & Witten)
1995 ~	Dirichlet Branes
1998 ~	Wall-Crossing is Bound State
	Dissociation (Lee & P.Y.)
2001 ~	Wall-Crossing for Black Holes (Denef)
•	
•	
•	
2008 ~	Konstevich-Soibelman Explained (Gaiotto & Moore & Neitzke)
2011 ~	KS Wall-Crossing proved via Quatum Mechanics Manschot , Pioline & Sen / Kim , Park, Wang & P.Y. / Sen

wall-crossing is disappearance of BPS particles as we deform a supersymmetric 4d theory continuously



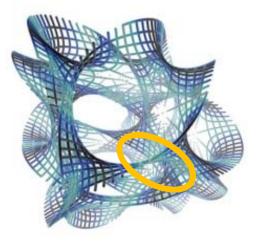
wall-crossing is disappearance of calibrated 3-cycles as we deform a Calabi-Yau space continuously

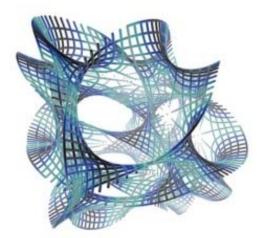


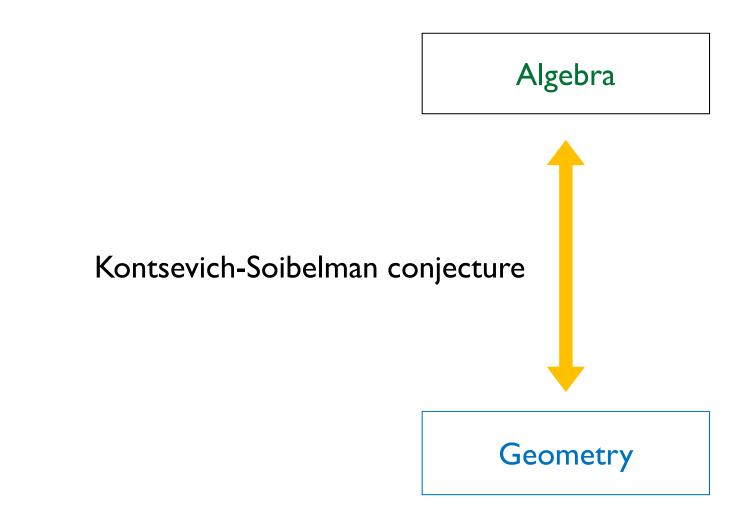
Calabi-Yau manifold & calibrated 3-cycles

$$J^{(1,1)} \qquad J^{(1,1)} \qquad = 0$$

$$\Omega^{(3,0)} \qquad e^{-i\alpha} \Omega^{(3,0)} \qquad = \text{volume density of } \bigcirc$$







 $\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$

 $\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$

$$\langle \gamma, \gamma' \rangle = \langle (g, e), (g', e') \rangle = g \cdot e' - e \cdot g' \in \mathbf{Z}$$

$$\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$$
 \downarrow
 V_{γ}

 $\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$

$$V_{\gamma}V_{\gamma'} - V_{\gamma'}V_{\gamma} = (-1)^{\langle \gamma, \gamma' \rangle} \langle \gamma, \gamma' \rangle V_{\gamma+\gamma'} \qquad \langle \gamma, \gamma' \rangle = 0, \pm 1, \pm 2, \dots$$

 $\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$

$$V_{\gamma}V_{\gamma'} - V_{\gamma'}V_{\gamma} = (-1)^{\langle \gamma, \gamma' \rangle} \langle \gamma, \gamma' \rangle V_{\gamma+\gamma'} \qquad \langle \gamma, \gamma' \rangle = 0, \pm 1, \pm 2, \dots$$

$$\Omega(\gamma) = 0, \pm 1, \pm 2, \dots$$

the "quantum degeneracy" of a given species of cycle / particle; non-zero if and only if such a cycle exists in the geometric sense

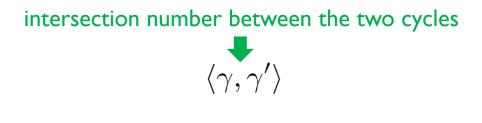
 $\gamma = (g, e) \in \mathbf{Z}^r \times \mathbf{Z}^r$

$$V_{\gamma}V_{\gamma'} - V_{\gamma'}V_{\gamma} = (-1)^{\langle \gamma, \gamma' \rangle} \langle \gamma, \gamma' \rangle V_{\gamma+\gamma'} \qquad \langle \gamma, \gamma' \rangle = 0, \pm 1, \pm 2, \dots$$

$$\mathbf{\Omega}(\gamma) = 0, \pm 1, \pm 2, \dots$$

the "quantum degeneracy" of a given species of cycle / particle; non-zero if and only if such a cycle exists in the geometric sense

mathematicians say, from 6d viewpoint



Euler number of the moduli space of the cycle

physicists say, from 4d viewpoint

Schwinger product
$$\begin{array}{c} \langle \gamma, \gamma' \rangle = \langle (g, e), (g', e') \rangle = g \cdot e' - e \cdot g' \end{array}$$

2nd helicity trace = the "number" of species of such particles

$$\Omega(\gamma) = -\frac{1}{2} \operatorname{tr}_{\gamma} (-1)^{2J_3} (2J_3)^2$$
$$\to (-1)^{2l} \times (2l+1)$$

on [a spin ½ + two spin 0]
x [angular momentum l multiplet]

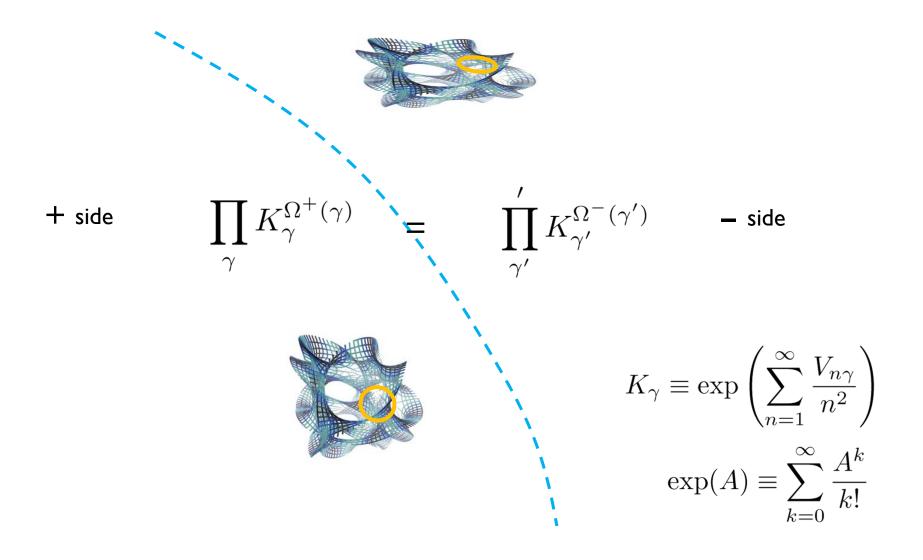
an infinite dimensional representation of Kontsevich-Soibelman wall-crossing algebra

$$V_{\gamma}V_{\gamma'} - V_{\gamma'}V_{\gamma} = (-1)^{\langle \gamma, \gamma' \rangle} \langle \gamma, \gamma' \rangle V_{\gamma+\gamma'} \qquad \langle \gamma, \gamma' \rangle = 0, \pm 1, \pm 2, \dots$$

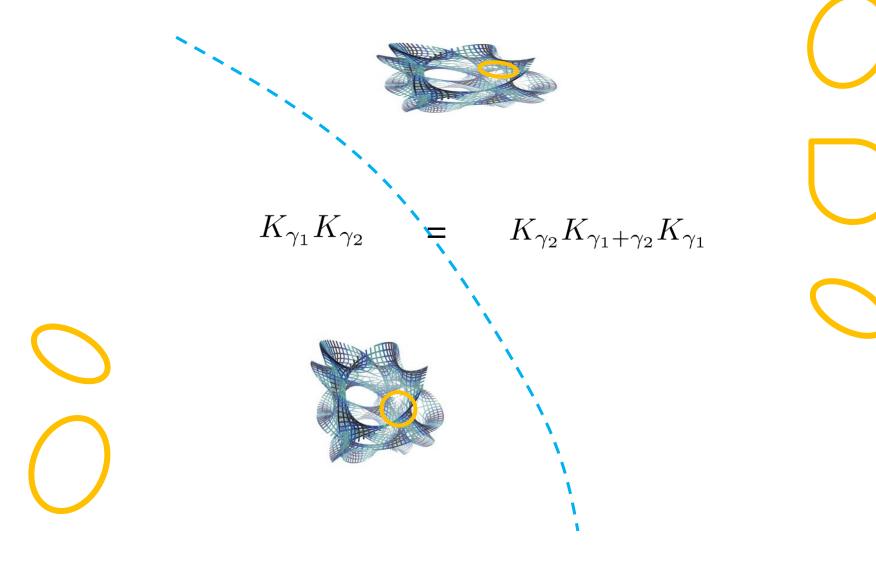
$$K_{\gamma} \equiv \exp\left(\sum_{n=1}^{\infty} \frac{V_{n\gamma}}{n^2}\right)$$

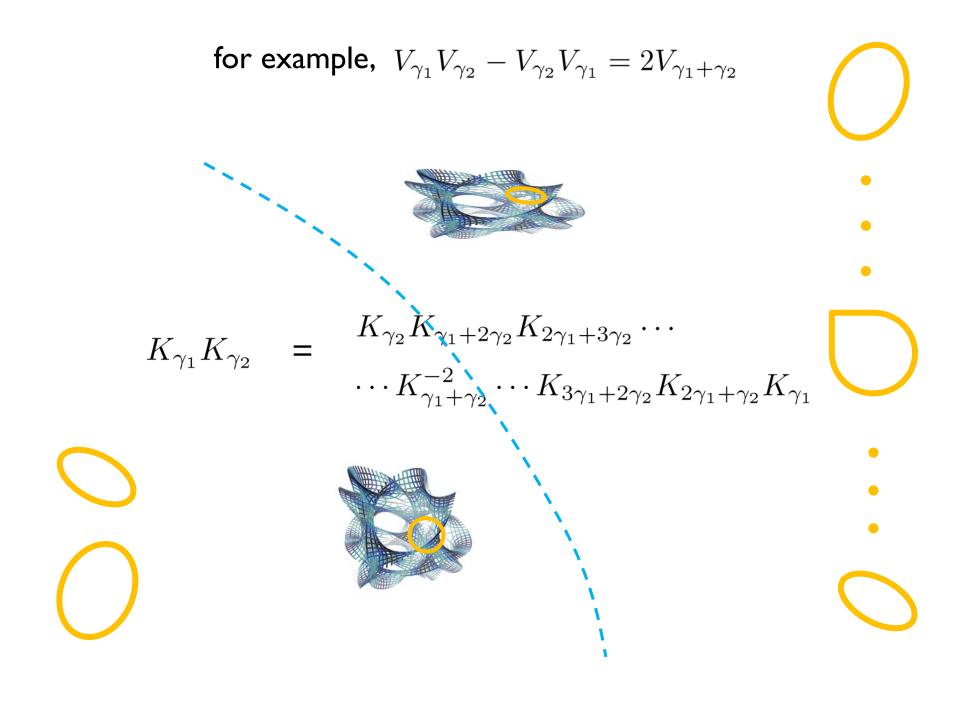
$$K_{\gamma} : X_{\alpha} \to X_{\alpha} (1 - \sigma(\gamma) X_{\gamma})^{\langle \gamma, \alpha \rangle}$$

the conjecture : given the left-hand-side, the right-hand-side is entirely determined via the algebraic identity as follows

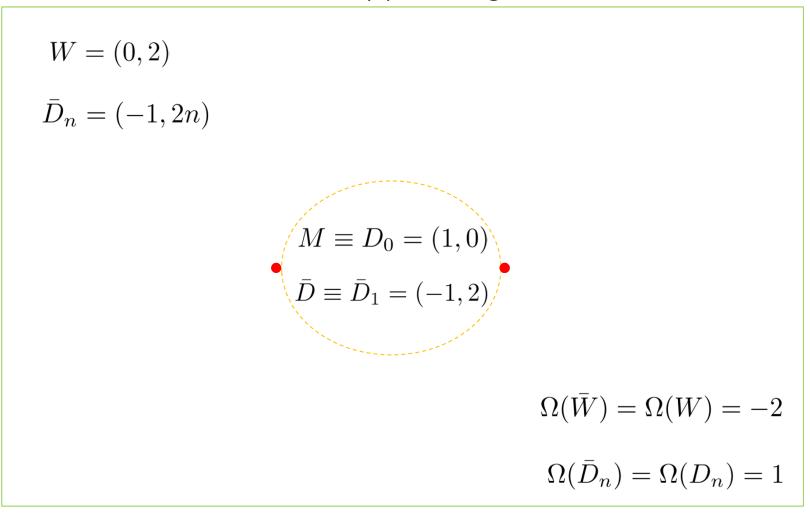


for example,
$$V_{\gamma_1}V_{\gamma_2} - V_{\gamma_2}V_{\gamma_1} = -V_{\gamma_1+\gamma_2}$$



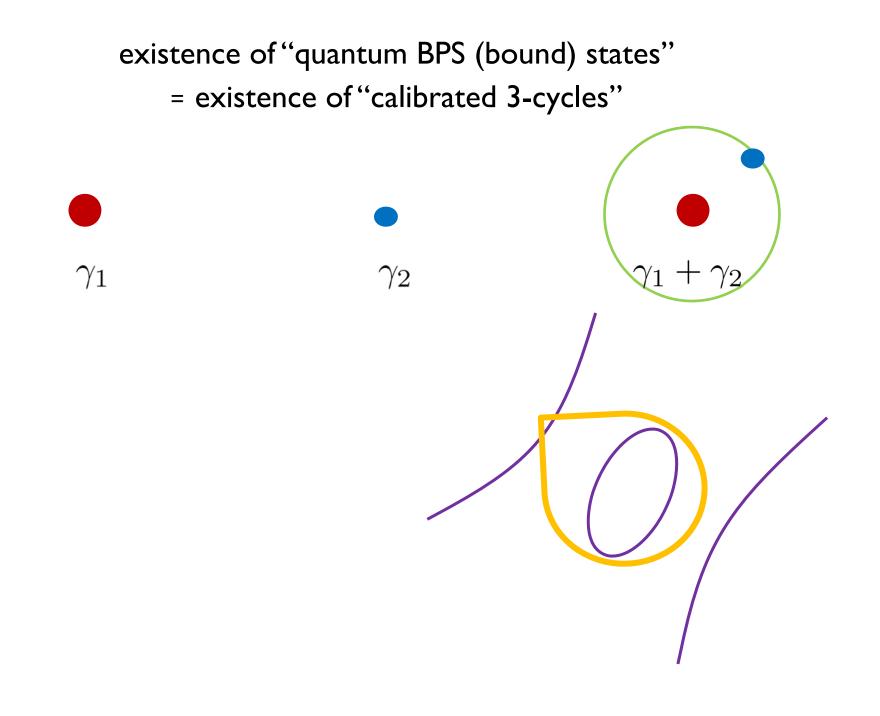


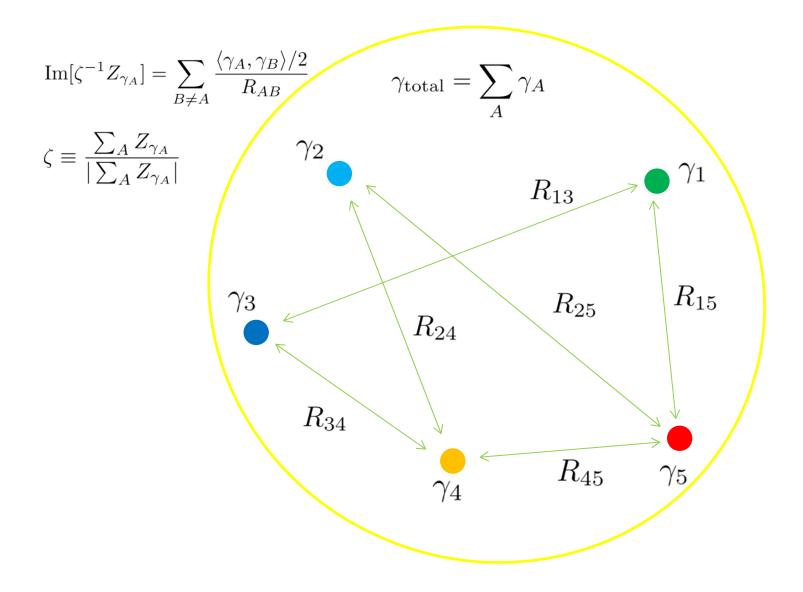
which fits perfectly the wall-crossing prototype : D=4 N=2 SU(2) Seiberg-Witten



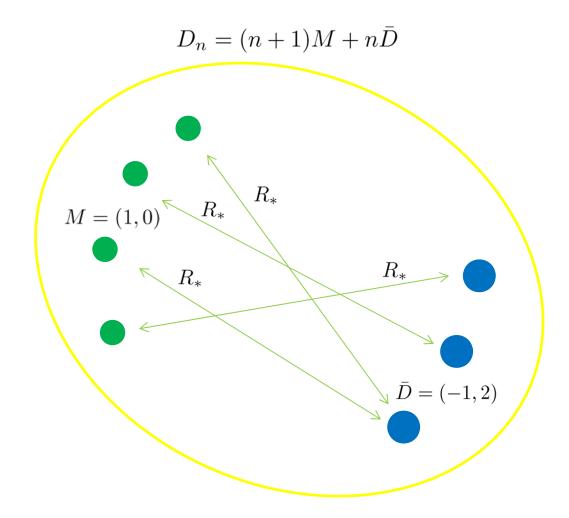
true ?

how to see from BPS state building/counting?



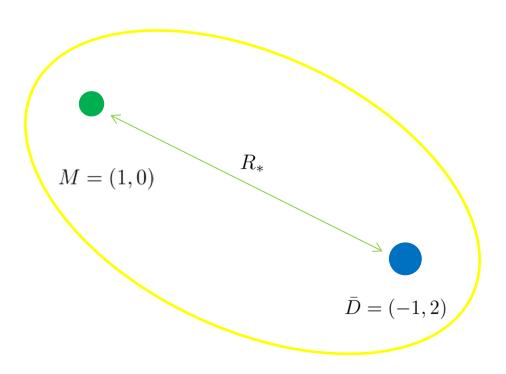


in particular, for SU(2) Seiberg-Witten

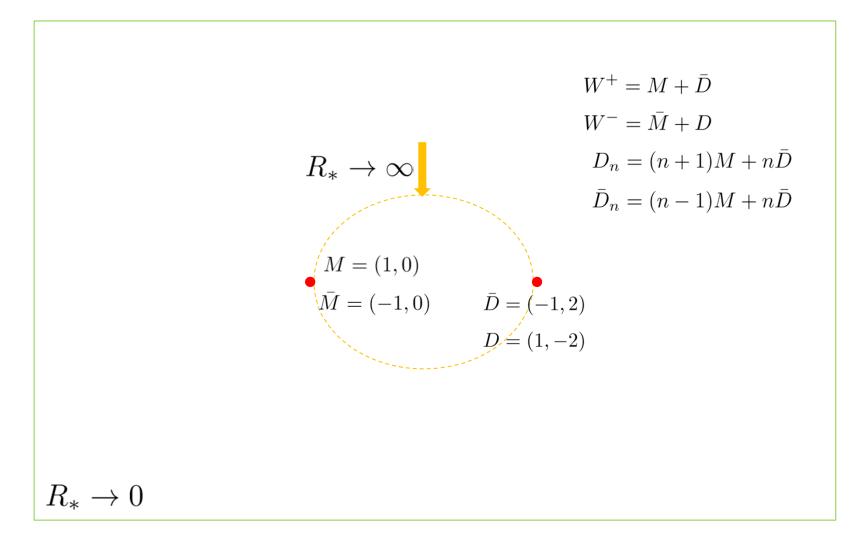


in particular, for SU(2) Seiberg-Witten

 $W^+ = M + \bar{D}$



wall-crossing \leftarrow dissociation of supersymmetric bound states



thus, wall-crossing has a very simple and interpretation in the particle / quantum mechanics viewpoint as bound states becoming unbound

 ∞

 $\sim R$

2000 Stern + P.Y.

wall-crossing formula for simple magnetic charges; weak coupling regime

2002 Denef

quiver dynamics representation of N=2 supergravity BH's

- •
- •

2008 Kontsevich + Soibelman

- •
- •
- •

2010/2011 Manschot + Pioline + Sen

general n-particle conjecture for Quantum Mechanics Counting

2011 Lee+P.Y. / Kim+Park+Wang+P.Y.

general n-particle solution to Quantum Mechanics Counting

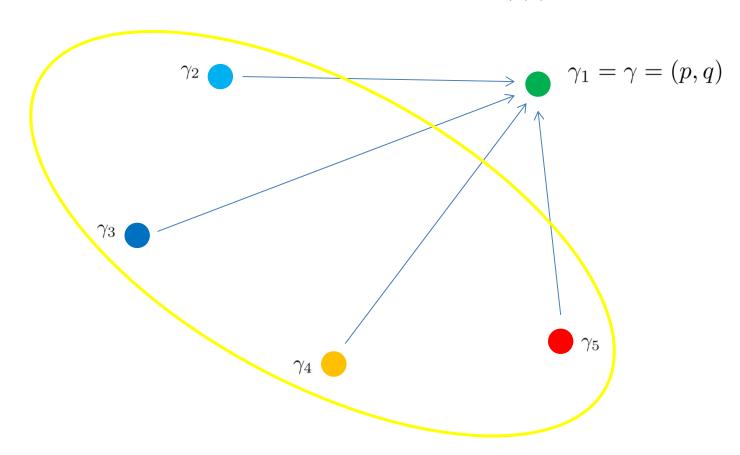
quantum mechanics for many such charged particles Kim+Park+P.Y.+Wang 2011

$$\int dt \ \mathcal{L}_{kinetic} = \int dt \int d\theta^2 d\bar{\theta}^2 F(\hat{\Phi}^{Aa})$$
$$\int dt \ \mathcal{L}_{potential} = \int dt \int d\theta \ \left(i\mathcal{K}(\Phi)_A \Lambda^A - iW(\Phi)_{Aa} D\Phi^{Aa}\right)$$
$$\mathcal{K}_A = \operatorname{Im}[\zeta^{-1} Z_{\gamma_A}] - \sum_{B \neq A} \frac{\langle \gamma_A, \gamma_B \rangle/2}{|\vec{x}_A - \vec{x}_B|}$$
$$\vec{W}_A = \sum_{B \neq A} \frac{\langle \gamma_A, \gamma_B \rangle}{2} \ \vec{W}_{Dirac}^{4\pi}(\vec{x}_A - \vec{x}_B)$$

$$F(\vec{x}_A) \simeq \sum_A |Z_A| |\vec{x}_A|^2 = \sum_A m_A |\vec{x}_A|^2$$
 asymptotically

each dyon feels the rest via long-range tails

$$\mathcal{Z}_{\gamma=(p,q)} \equiv \left[p^i \phi_D^i + q^i \phi^i\right] \Big|_{\gamma_{A'=2,3,4,\dots}}$$



each dyon feels the rest via long-range tails Sungjay Lee+P.Y. 2011

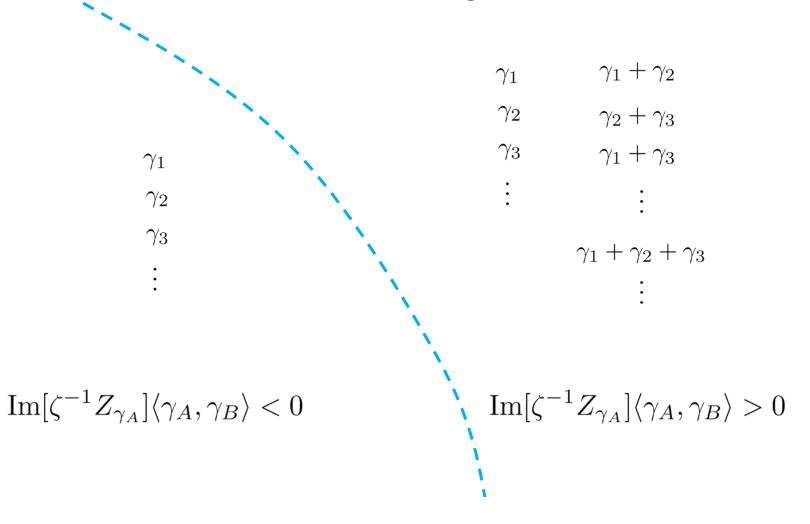
$$\mathcal{L}_{probe} = -|\mathcal{Z}_{\gamma}|\sqrt{1 - \dot{\vec{x}}^2} + \operatorname{Re}[\zeta^{-1}\mathcal{Z}_{\gamma}] - \dot{\vec{x}} \cdot \vec{W}$$

$$\simeq \frac{1}{2} |\mathcal{Z}_{\gamma}| \dot{\vec{x}}^2 - \frac{(\mathrm{Im}[\zeta^{-1}\mathcal{Z}_{\gamma}])^2}{2|\mathcal{Z}_{\gamma}|} - \dot{\vec{x}} \cdot \vec{W}$$

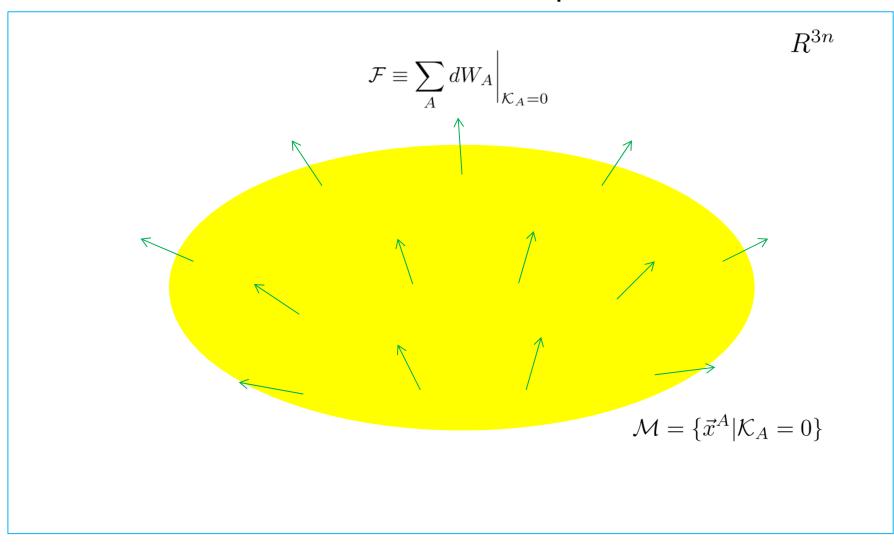
$$\operatorname{Im}[\zeta^{-1}\mathcal{Z}_{\gamma_A}] = \operatorname{Im}[\zeta^{-1}Z_{\gamma_A}] - \sum_{B \neq A} \frac{\langle \gamma_A, \gamma_B \rangle/2}{|\vec{x}_A - \vec{x}_B|}$$
$$\vec{\partial} \times \vec{W} \equiv \vec{\partial} \operatorname{Im}[\zeta^{-1}\mathcal{Z}_{\gamma}]$$
$$\zeta^{-1}\mathcal{Z}_{\gamma} = |\mathcal{Z}_{\gamma}|e^{i\alpha}, \quad |\alpha| \ll 1$$

repulsive or attractive depending on a sign

thus, wall-crossing has a very simple and interpretation in the particle / quantum mechanics viewpoint as bound states becoming unbound



3n-dim dynamics \rightarrow 3 + 2(n-1) dim nonlinear sigma model via deformation & localization that preserve the index



which reduces the problem to a N=1 Dirac index on the manifold $\mathcal{K}_A = 0$ with Abelian magnetic fields Kim+Park+Wang+P.Y. 2011

3(n-1) bosons + 4(n-1) fermions $\rightarrow 2(n-1)$ bosons + 2(n-1) fermions

$$\mathcal{L}_{deformed}^{for \ index \ only} \bigg|_{L \to \infty} \to \mathcal{L}_{index}$$

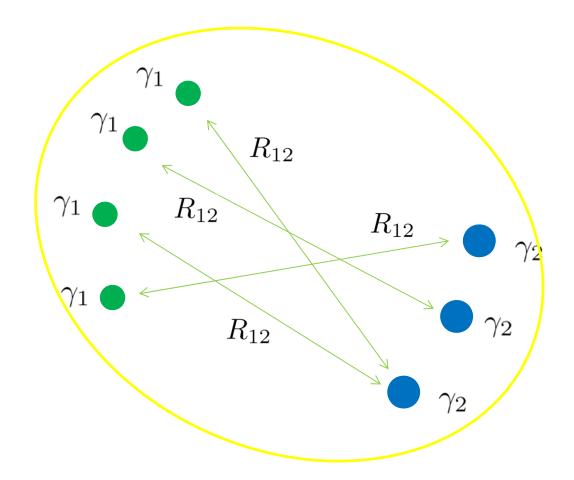
$$\begin{split} \mathcal{L}_{index} &\simeq \frac{1}{2} \, g_{\mu\nu} \dot{z}^{\mu} \dot{z}^{\nu} - \dot{x}^{\mu} \cdot \mathcal{A}_{\mu} + \frac{i}{2} g_{\mu\nu} \psi^{\mu} \left(\dot{\psi}^{\nu} + \dot{z}^{\alpha} \Gamma^{\nu}_{\alpha\beta} \psi^{\beta} \right) + i \mathcal{F}_{\mu\nu} \psi^{\mu} \psi^{\mu} \\ \mathcal{F} = d\mathcal{A} \equiv \sum_{A} dW_{A} \Big|_{\mathcal{K}_{A} = 0} \end{split}$$

index theorem

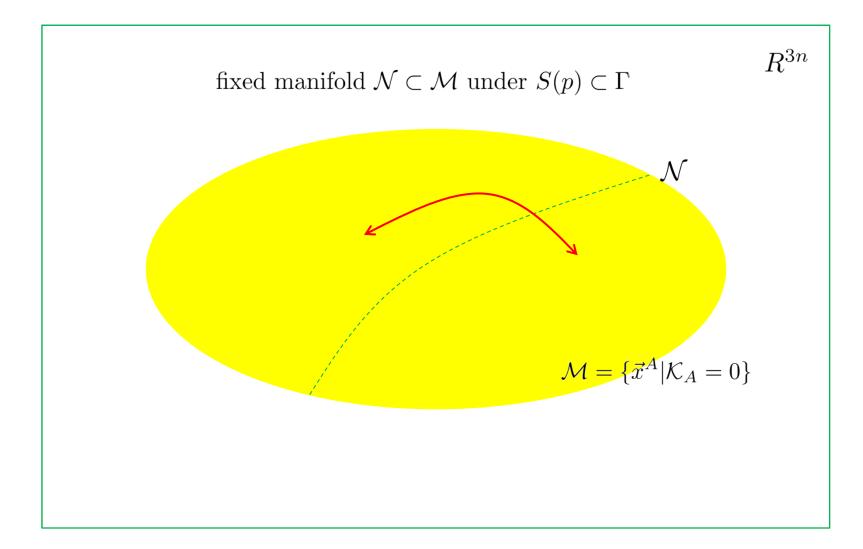
$$I_n(\{\gamma_A\}) = \operatorname{tr} \left[(-1)^F e^{-\beta H} \right] = \operatorname{tr} \left[(-1)^F e^{-\beta Q^2} \right]$$
$$= \int_{\mathcal{M} = \{\vec{x}_A \mid \mathcal{K}_A = 0\}} ch(\mathcal{F}) \wedge \operatorname{A}(\mathcal{M})$$
$$= \int_{\mathcal{M} = \{\vec{x}_A \mid \mathcal{K}_A = 0\}} ch(\mathcal{F}) \wedge \det \left(\frac{R/2}{\sinh(R/2)} \right)$$

$$\mathcal{F} \equiv \sum_{A>B} \frac{\langle \gamma_A, \gamma_B \rangle}{2} \left. \mathcal{F}_{Dirac}^{4\pi} (\vec{x}_A - \vec{x}_B) \right|_{\mathcal{K}_A = 0}$$

Bose/Fermi statistics is essential



incorporating Bose/Fermi statistics

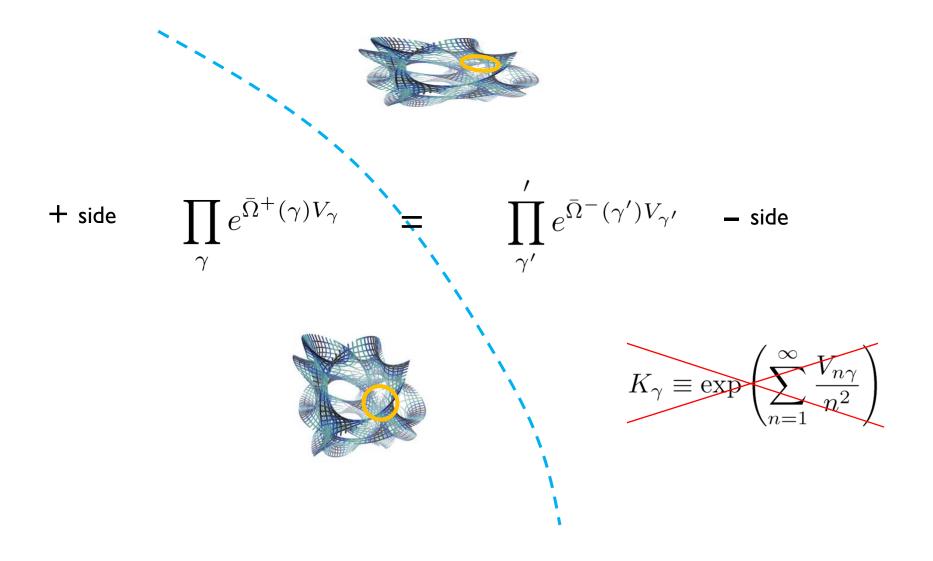


universal wall-crossing formulae from quantum mechanics of BPS particles Kim+Park+P.Y.+Wang 2011

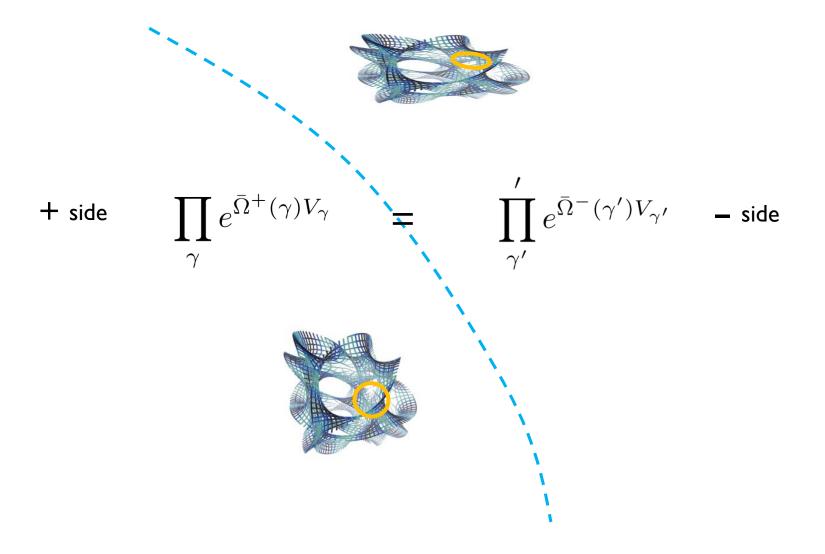
$$\begin{split} \bar{\Omega}^{-} \left(\sum \gamma_{A} \right) - \bar{\Omega}^{+} \left(\sum \gamma_{A} \right) &= (-1)^{\sum_{A > B} \langle \gamma_{A}, \gamma_{B} \rangle + n - 1} \frac{\prod_{A} \bar{\Omega}^{+}(\gamma_{A})}{|\Gamma|} \int_{\mathcal{M}} ch(\mathcal{F}) \\ &\vdots \\ &+ (-1)^{\sum_{A' > B'} \langle \gamma'_{A''}, \gamma'_{B'} \rangle + n' - 1} \frac{\prod_{A'} \bar{\Omega}^{+}(\gamma'_{A'})}{|\Gamma'|} \int_{\mathcal{M}'} ch(\mathcal{F}') \\ &\vdots \\ \bar{\Omega}(\gamma) &= \\ &\sum_{p \mid \gamma} \Omega(\gamma/p)/p^{2} \\ &\vdots \\ \end{split}$$

$$\sum_{A=1}^{n} \gamma_A = \dots = \sum_{A'=1}^{n'} \gamma'_{A'} = \dots = \sum_{A''=1}^{n''} \gamma''_{A''} = \dots$$

which fits an alternate form KS algebra with $\bar{\Omega}(\Gamma) \equiv \sum_{p|\Gamma} \Omega(\Gamma/p)/p^2$



and precisely reproduces answers from the conjectured Kontsevich-Soibelman Algebra



2000 Stern + P.Y.

wall-crossing formula for simple magnetic charges; weak coupling regime

2002 Denef

quiver dynamics representation of N=2 supergravity BH's

- •
- :

2008 Kontsevich + Soibelman

- •
- •
- •

2010/2011 Manschot + Pioline + Sen

general n-particle conjecture for Quantum Mechanics Counting

2011 Lee+P.Y. / Kim+Park+Wang+P.Y.

general n-particle solution to Quantum Mechanics Counting

2011 Sen

Quantum Mechanics Counting = Kontsevich-Soibelman Conjecture

quantum physics count states, gravity makes geometry, and superstring theory combines quantum & gravity

quantum mechanics "count" geometry via superstring theory

→ quantum mechanical proof of the Kontsevich-Soibelman conjecture which solves, partially, a 30-year-old geometry problem geometry as mathematical tools for physics

string theory as physical tools for geometry